6 snaps a minute if you multiply 9 x 6 is 54
The y-intercept of linear function (f- g)(x) is (0,9)
<h3>How to determine the y-intercept?</h3>
The table of values is given as:
x -6 -4 -1 3 4
f(x) 15 11 5 -3 -5
g(x) -36 -26 -11 9 14
The equations of the functions is calculated using:

So, we have:

Evaluate
f(x) = -2x + 3
Also, we have:

Evaluate
g(x) = 5x - 6
Next, we calculate (f - g)(x) using:
(f - g)(x) = f(x) - g(x)
This gives
(f - g)(x) = -2x + 3 - 5x + 6
Substitute 0 for x
(f - g)(0) = -2(0) + 3 - 5(0) + 6
Evaluate
(f - g)(0) = 9
Hence, the y-intercept of (f- g)(x) is (0,9)
Read more about linear functions at:
brainly.com/question/24896196
#SPJ1
First you add 1/2 and 3/4:
5/4n
5/4n = 12 so you divide both sides by 5/4
That gives you the answer of n= 9.6.
Hope this helped :)
Answer:
Bias for the estimator = -0.56
Mean Square Error for the estimator = 6.6311
Step-by-step explanation:
Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.
To find - Determine the bias and the mean squared error for this estimator of the mean.
Proof -
Let us denote
X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)
Now,
An estimate of mean, μ is suggested as

Now
Bias for the estimator = E(μ bar) - μ
= 
= 
= 
= 
= 
= 3.9375 - 4.5
= - 0.5625 ≈ -0.56
∴ we get
Bias for the estimator = -0.56
Now,
Mean Square Error for the estimator = E[(μ bar - μ)²]
= Var(μ bar) + [Bias(μ bar, μ)]²
= 
= 
= ![\frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})] }) + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%28%20%5B%7B3Var%28X_%7B1%7D%29%20%2B%204Var%28X_%7B2%7D%29%5D%20%20%7D%29%20%2B%200.3136)
= ![\frac{1}{64} [{3(57.76) + 4(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B%7B3%2857.76%29%20%2B%204%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [7(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B7%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [404.32] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B404.32%5D%20%20%7D%20%2B%200.3136)
= 
= 6.6311
∴ we get
Mean Square Error for the estimator = 6.6311
Answer:
Step-by-step explanation:
Given that there is a t distribution with 7 degrees of freedom.
P(-1.29 < t < 1.29)=1-0.2380
=0.7620
b) Now there is a different t distribution with 18 df.
When 
c=-1.733