Explanation:
Primary succession is one of two types of biological and ecological succession of plant life, occurring in an environment in which new substrate devoid of vegetation and other organisms usually lacking soil, such as a lava flow or area left from retreated glacier, is deposited.[1] In other words, it is the gradual growth of an ecosystem over a longer period of time.[2][3]
Primary succession occurring over time. The soil depths increase with respect to the increase in decomposition of organic matter. and there is a gradual increase of species diversity in the ecosystem. The labels I-VII represent the different stages of primary succession. I-bare rocks, II-pioneers (mosses, lichen, algae, fungi), III-annual herbaceous plants, IV-perennial herbaceous plants and grasses, V-shrubs, VI-shade intolerant trees, VII-shade tolerant trees.
Primary succession on Rangitoto Island
In contrast, secondary succession occurs on substrate that previously supported vegetation before an ecological disturbance from smaller things like floods, hurricanes, tornadoes, and fires which destroyed the plant life.[4]
The given question is incomplete as the option are not provided however, the correct options are as follows:
Defective proteins are often degraded quickly, making their effects temporary.
Single amino acid substitutions caused by errors in mRNA transcription would not affect protein function.
Unlike DNA mutations, mRNA transcripts have short half-lives and are not inherited across many generations.
Degradation of defective proteins activates mRNA repair pathways RNA polymerases synthesize many transcripts per gene, so only a small fraction of RNA transcripts would have errors.
ch mRNA molecule is only translated once and then degraded
Answer:
The correct answer is - statements 1, 3, and 4.
Explanation:
DNA polymerase is the enzyme that is responsible for the production of the new DNA molecule and any mutation in this enzyme that will inhibit the DNA repair process which affects future generations.
RNA polymerase is an enzyme that is responsible for the transcription of DNA to mRNA and any error-prone mRNAs have chances of degradation. Error in DNA replication is from generation to generation as it is inherited
The process of transcription is quick.
Cells<span> need a source of </span>energy<span>, they </span>get<span> this </span>energy<span> by breaking down food molecules to release, the stored chemical </span>energy.This process is called 'cellular<span>respiration'. The process is happens in all the </span>cells<span> in our body. Oxygen is used to oxidize food, main oxidized food is sugar(glucose).</span>
The second statement is correct.
Most hydroelectric power plants have a dam and a reservoir. These structures may obstruct fish migration and affect their populations. Operating a hydroelectric power plant may also change the water temperature and the river's flow. These changes may harm native plants and animals in the river and on land. Reservoirs may cover people's homes, important natural areas, agricultural land, and archaeological sites. So building dams can require relocating people. Methane, a strong greenhouse gas, may also form in some reservoirs and be emitted to the atmosphere. Reservoir construction is "drying up" in the United States Gosh, hydroelectric power sounds great -- so why don't we use it to produce all of our power? Mainly because you need lots of water and a lot of land where you can build a dam and reservoir, which all takes a LOT of money, time, and construction. In fact, most of the good spots to locate hydro plants have already been taken. In the early part of the century hydroelectric plants supplied a bit less than one-half of the nation's power, but the number is down to about 10 percent today. The trend for the future will probably be to build small-scale hydro plants that can generate electricity for a single community. As this chart shows, the construction of surface reservoirs has slowed considerably in recent years. In the middle of the 20th Century, when urbanization was occurring at a rapid rate, many reservoirs were constructed to serve peoples' rising demand for water and power. Since Hydroelectric energy is produced by the force of falling water. The capacity to produce this energy is dependent on both the available flow and the height from which it falls. Building up behind a high dam, water accumulates potential energy. This is transformed into mechanical energy when the water rushes down the sluice and strikes the rotary blades of turbine. The turbine's rotation spins electromagnets which generate current in stationary coils of wire. Finally, the current is put through a transformer where the voltage is increased for long distance transmission over power lines.
Hydroelectric-power production in the United States and the world!
(sorry this is the second part)