Answer:
If Elizabeth randomly chooses her ride in the morning and in the evening, 2/3 is the probability that she'll use a cab exactly one time
I used the 55.2 and the 0.6 to find a ratio of 92:1, so for every cm of toy car steering wheel there are 92 cm of real truck steering wheel. so using this ratio i times the 3.5cm of the toy car windshield by the 92, this gave me the answer of 322cm, which theoretically is the answer of this equation. 322cm.
Answer:
a.) one sample t test
b.) H0 : μ = 59.3
c.) H1 : μ > 59.3
d.) μ = 59.3 ; σ = 39.84
e.) xbar = 79.4 ; s = 61.36
Test statistic = 3.16
Step-by-step explanation:
Given the sample data:
49.00 49.00 49.00 49.00 49.00 63.00 63.00 63.00 63.00 63.00 199.00 199.00 199.00 199.00 199.00 38.00 38.00 38.00 38.00 38.00 48.00 48.00 48.00 48.00 48.00 49.00 63.00 199.00 38.00 48.00
Sample size, n = 30
Using calculator :
xbar from the data above = 79.4
Standard deviation = 61.359
H0 : μ = 59.3
H1 : μ > 59.3
Test statistic :
(Xbar - μ) ÷ (σ/sqrt(n)
σ = 34.83
(79.4 - 59.3) ÷ (34.83/sqrt(30))
20.1 ÷ 6.359
Test statistic = 3.16
#2 or B is not a function because it has 3 as X twice
Answer:
There is a 24.3% probability that one of the calculators will be defective.
Step-by-step explanation:
For each calculator, there are only two possible outcomes. Either it is defective, or it is not. So we use the binomial probability distribution to solve this problem.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
The probability of a defective calculator is 10 percent.
This means that 
If 3 calculators are selected at random, what is the probability that one of the calculators will be defective
This is P(X = 1) when n = 3. So


There is a 24.3% probability that one of the calculators will be defective.