Answer:
The distance of the restaurant from the man and woman = 312.5 m
Option C is correct.
A distância do restaurante do homem e da mulher = 312,5 m
A opção C está correta.
Step-by-step explanation:
English Translation
A man is located 300 m from a linear (straight) road. On that road his wife is located 500 m from the man. Both walk towards a restaurant that is on the road and is the same distance from the two. What is this distance in meters?
A) 400m
B) 300m
C) 312.5m
D) 325m
E) 87.5m
Solution
A diagram showing the scenario described, is presented the attached image.
From the attached image, x is the distance of the restaurant from both the man and the woman. So, there are two right angled triangles,
- The bigger one with hypotenuse 500 m and other side 300 m, the third side is calculated as
(Third side)² = 500² - 300² = 160000
Third side = 400 m
- The smaller right angled triangle, with hypotenuse x m and other sides 300 m & (400 - x) m
(400 - x)² + 300² = x²
160000 - 800x - x² + 90000 = x²
800x = 160000 + 90000 = 250000
x = (250000/800) = 312.5 m
Hence, the distance of the restaurant from the man and woman = 312.5 m
In Portugese/Em português
Um diagrama mostrando o cenário descrito é apresentado na imagem em anexo.
Na imagem em anexo, x é a distância do restaurante do homem e da mulher. Então, existem dois triângulos retângulos,
- Quanto maior com hipotenusa 500 me outro lado 300 m, o terceiro lado é calculado como
(Terceiro lado) ² = 500² - 300² = 160000
Terceiro lado = 400 m
- O triângulo angular direito menor, com hipotenusa x me outros lados 300 m & (400 - x) m
(400 - x)² + 300² = x²
160000 - 800x - x² + 90000 = x²
800x = 160000 + 90000 = 250000
x = (250000/800) = 312.5 m
Portanto, a distância do restaurante do homem e da mulher = 312,5 m
Hope this Helps!!!
Espero que isto ajude!!!