They are called Amniotic eggs
Answer:
be heritable and be an advantage to offspring
The randomness in the alignment of recombined chromosomes at the metaphase plate, coupled with the crossing over events between nonsister chromatids, are responsible for much of the genetic variation in the offspring. To clarify this further, remember that the homologous chromosomes of a sexually reproducing organism are originally inherited as two separate sets, one from each parent. Using humans as an example, one set of 23 chromosomes is present in the egg donated by the mother. The father provides the other set of 23 chromosomes in the sperm that fertilizes the egg. Every cell of the multicellular offspring has copies of the original two sets of homologous chromosomes. In prophase I of meiosis, the homologous chromosomes form the tetrads. In metaphase I, these pairs line up at the midway point between the two poles of the cell to form the metaphase plate. Because there is an equal chance that a microtubule fiber will encounter a maternally or paternally inherited chromosome, the arrangement of the tetrads at the metaphase plate is random. Thus, any maternally inherited chromosome may face either pole. Likewise, any paternally inherited chromosome may also face either pole. The orientation of each tetrad is independent of the orientation of the other 22 tetrads.
Explanation:
Answer:
Increases homocysteine levels
Explanation:
Homocysteine is an aminoacid that is resent in our blood already. This is mostly increased in our blood due to increased consumption of meat and other potential reasons, such as smoking.
High level of this aminoacid are linked to the development of heart diseases. This is because a high homocysteine level causes development of heart diseases along with other risks of renerl diseases.
Hope it helps!