1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
3 years ago
7

Sin tita= 0.6892.find the value Of tita correct to two decimal places​

Mathematics
1 answer:
Anvisha [2.4K]3 years ago
4 0

Answer:

\theta \approx 6.28n + 2.38,  \quad  n \in \mathbb{Z}

or

\theta \approx 6.28n + 0.76, \quad n \in \mathbb{Z}

Considering \theta \in (0, 2\pi]

\theta \approx 2.38

or

\theta \approx 0.76

Step-by-step explanation:

\sin(\theta)=0.6892

We have:

\sin (x)=a \Longrightarrow x=\arcsin (a)+2\pi n \text{ or } x=\pi -\arcsin (a)+2\pi n \text{ as } n\in \mathbb{Z}

Therefore,

\theta= \arcsin (0.6892)+2\pi n, \quad n \in \mathbb{Z}

or

\theta = \pi -\arcsin (0.6892)+2\pi n, \quad  n\in \mathbb{Z}

---------------------------------

\theta \approx 6.28n + 2.38,  \quad  n \in \mathbb{Z}

or

\theta \approx 6.28n + 0.76, \quad n \in \mathbb{Z}

You might be interested in
Hey! Giving away 50 free points! Just type "octopus" as an answer and I will give you 5 star, a heart, and brainly will give you
Arturiano [62]

Answer:

octopus

Step-by-step explanation:

thank you so muchhhhh

3 0
3 years ago
Read 2 more answers
Help me with trigonometry
poizon [28]

Answer:

See below

Step-by-step explanation:

It has something to do with the<em> </em><u><em>Weierstrass substitution</em></u>, where we have

$\int\, f(\sin(x), \cos(x))dx = \int\, \dfrac{2}{1+t^2}f\left(\dfrac{2t}{1+t^2}, \dfrac{1-t^2}{1+t^2} \right)dt$

First, consider the double angle formula for tangent:

\tan(2x)= \dfrac{2\tan(x)}{1-\tan^2(x)}

Therefore,

\tan\left(2 \cdot\dfrac{x}{2}\right)= \dfrac{2\tan(x/2)}{1-\tan^2(x/2)} = \tan(x)=\dfrac{2t}{1-t^2}

Once the double angle identity for sine is

\sin(2x)= \dfrac{2\tan(x)}{1+\tan^2(x)}

we know \sin(x)=\dfrac{2t}{1+t^2}, but sure,  we can derive this formula considering the double angle identity

\sin(x)= 2\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{2}\right)

Recall

\sin \arctan t = \dfrac{t}{\sqrt{1 + t^2}} \text{ and } \cos \arctan t = \dfrac{1}{\sqrt{1 + t^2}}

Thus,

\sin(x)= 2 \left(\dfrac{t}{\sqrt{1 + t^2}}\right) \left(\dfrac{1}{\sqrt{1 + t^2}}\right) = \dfrac{2t}{1 + t^2}

Similarly for cosine, consider the double angle identity

Thus,

\cos(x)=  \left(\dfrac{1}{\sqrt{1 + t^2}}\right)^2- \left(\dfrac{t}{\sqrt{1 + t^2}}\right)^2 = \dfrac{1}{t^2+1}-\dfrac{t^2}{t^2+1} =\dfrac{1-t^2}{1+t^2}

Hence, we showed \sin(x) \text { and } \cos(x)

======================================================

5\cos(x) =12\sin(x) +3, x \in [0, 2\pi ]

Solving

5\,\overbrace{\frac{1-t^2}{1+t^2}}^{\cos(x)} = 12\,\overbrace{\frac{2t}{1+t^2}}^{\sin(x)}+3

\implies \dfrac{5-5t^2}{1+t^2}= \dfrac{24t}{1+t^2}+3 \implies  \dfrac{5-5t^2 -24t}{1+t^2}= 3

\implies 5-5t^2-24t=3\left(1+t^2\right) \implies -8t^2-24t+2=0

t = \dfrac{-(-24)\pm \sqrt{(-24)^2-4(-8)\cdot 2}}{2(-8)} = \dfrac{24\pm 8\sqrt{10}}{-16} =  \dfrac{3\pm \sqrt{10}}{-2}

t=-\dfrac{3+\sqrt{10}}{2}\\t=\dfrac{\sqrt{10}-3}{2}

Just note that

\tan\left(\dfrac{x}{2}\right) =  \dfrac{3\pm 8\sqrt{10}}{-2}

and  \tan\left(\dfrac{x}{2}\right) is not defined for x=k\pi , k\in\mathbb{Z}

6 0
3 years ago
Can someone explain this step by step please
kobusy [5.1K]

Answer:

x = - 2

y = 6

Step-by-step explanation:

The best way to do this is to put - 3x in for y in the second equation.

4x - 2(-3x) = - 20        Watch the signs. You have 2 minus signs.

4x - - 6x = -20            Change - - 6x to 6x

4x + 6x = - 20              Add

10x = - 20                   Divide by 10

x = -20/10

x = - 2

============================

Find y

y = - 3x

y = -3 * -2

y = 6

3 0
3 years ago
Bustin bought a DVD player that was marked down from $150 to $100. find the percent of decrease​
Leno4ka [110]
33% of decrease.

150-100=50

50 is 1/3 of 150

1/3= 33%
4 0
3 years ago
If m∠JKM = 43, m∠MKL = (8 - 20), and m∠JKL = (10x - 11), find each measure.
Brut [27]

Correct Question: If m∠JKM = 43, m∠MKL = (8x - 20), and m∠JKL = (10x - 11), find each measure.

1. x = ?

2. m∠MKL = ?

3. m∠JKL = ?

Answer/Step-by-step explanation:

Given:

m<JKM = 43,

m<MKL = (8x - 20),

m<JKL = (10x - 11).

Required:

1. Value of x

2. m<MKL

3. m<JKL

Solution:

1. Value of x:

m<JKL = m<MKL + m<JKM (angle addition postulate)

Therefore:

(10x - 11) = (8x - 20) + 43

Solve for x

10x - 11 = 8x - 20 + 43

10x - 11 = 8x + 23

Subtract 8x from both sides

10x - 11 - 8x = 8x + 23 - 8x

2x - 11 = 23

Add 11 to both sides

2x - 11 + 11 = 23 + 11

2x = 34

Divide both sides by 2

\frac{2x}{2} = \frac{34}{2}

x = 17

2. m<MKL = 8x - 20

Plug in the value of x

m<MKL = 8(17) - 20 = 136 - 20 = 116°

3. m<JKL = 10x - 11

m<JKL = 10(17) - 11 = 170 - 11 = 159°

3 0
3 years ago
Other questions:
  • Samuel is filling stockings for children for Christmas. The stockings will each hold a small toy, a book, a fruit, and an articl
    8·1 answer
  • Which expression simplifies to 40?
    12·1 answer
  • Rewrite in simplest radical form <br> 1<br> x<br> −3<br> 6
    15·2 answers
  • Question 4
    11·1 answer
  • Which expression is equivalent to (3b+2r)+(4b+r)​
    14·2 answers
  • According to Edmunds, the average price that shoppers paid for a new car is $30,320. Assume that the standard deviation for the
    15·1 answer
  • the area of the square is same as the area of Rhombus whose diagonals measure 10 centimetre and 20 cm find the perimeter of the
    14·2 answers
  • Https://brainly.com/question/23389243?answeringSource=feedPublic%2FhomePage%2F21
    13·1 answer
  • What is the value of this??
    12·2 answers
  • Helppppppppppppppppppp
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!