1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
3 years ago
15

Choose the correct "If...then.." form of the statement:

Mathematics
1 answer:
asambeis [7]3 years ago
7 0
It would be If it is a zonk, then it is a widget.
All zonks are widgets, but are all widgets zonks?
You might be interested in
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
Solve the equation (3x/3x-1) + 2/x = 1
Dmitry_Shevchenko [17]

Answer:

Use Symbolab.

Step-by-step explanation:

5 0
3 years ago
What is the value of a in the equation a = 2 + 3a + 6?<br><br> −8<br> −4<br> 4<br> 8
max2010maxim [7]
A = 2 + 3a + 6

a - 3a = 2 + 6

-2a = 8

a = 8/-2

a = -4
4 0
3 years ago
Read 2 more answers
Which equation represents a line that is perpendicular to the line represented by
Artemon [7]

Answer:y= -4x + 12

Step-by-step explanation: i graphed it

7 0
3 years ago
Gavin paid for 4 pounds of bananas with a $10 bill he was given back $6.40 what was the cost of 1 pound of bananas write an equa
Pani-rosa [81]

Answer: the equation is 4t = 3.60

The cost of 1 pound of banana is $0.9

Step-by-step explanation:

Let t represent the cost of 1 pound of banana in dollars.

Gavin paid for 4 pounds of bananas. This means that the total cost of 4 pounds of banana will be 4× t = $4t

He gave a $10 bill to the seller and he was given back $6.40. This means that the actual cost of 4 pounds of banana would be

10 - 6.40 = $3.60

Therefore,

4t = 3.60

t = 3.60/4 = $0.9

3 0
3 years ago
Other questions:
  • According to the Triangle Inequality, the length of the longest side of a triangle must be less than the sum of the length of th
    6·1 answer
  • 1.70f+1.30s=37.90, 5.60f+5.40=147.20
    15·2 answers
  • Median, range, and interquartile range of 30,31,22,24,23,33
    14·2 answers
  • Volcano
    9·1 answer
  • Solve 11 - 4x - 3jx = w looking for x
    12·1 answer
  • Please help with this!! Triangles and angles
    6·1 answer
  • The histogram shows the number of minutes that users waited to register for classes on a university's online system. According t
    9·2 answers
  • - ( Intercepts form two points form )
    12·2 answers
  • Akjsdlfakjsdlfakjdslfkjadslfjaldskjfalkdsjfalkdjfl;akdjfl;kakdjf;lkakdjf;lakdksjf;lakdsjflk;Adolf;kakdjfl;akjddtl;he tiashtuskej
    14·1 answer
  • The linear combination method gives a solution of (–4, 2) for which of these systems of linear equations? 3 x 13 y = 14. 6 x 11
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!