Answer:
(x-7) (x^2-5)
Step-by-step explanation:
x^3 -7x^2 -5x+35
Make 2 groups
x^3 -7x^2 -5x+35
Factor x^2 from the first group and -5 from the second group
x^2 (x-7) -5(x-7)
Now factor (x-7) out
(x-7) (x^2-5)
Answer:
<h2><em><u>18</u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>, </u></em>
Radius of the cylinder = 3cm
Height of the cylinder = 3cm
<em><u>Therefore</u></em><em><u>, </u></em>
Lateral surface area of the cylinder




<em><u>Hence</u></em><em><u>,</u></em>
<em><u>The</u></em><em><u> </u></em><em><u>required</u></em><em><u> </u></em><em><u>value</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>green</u></em><em><u> </u></em><em><u>box</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>be</u></em><em><u> </u></em><em><u>18</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>
Answer:
A tree with a height of 6.2 ft is 3 standard deviations above the mean
Step-by-step explanation:
⇒
statement: A tree with a height of 5.4 ft is 1 standard deviation below the mean(FALSE)
an X value is found Z standard deviations from the mean mu if:

In this case we have: 

We have four different values of X and we must calculate the Z-score for each
For X =5.4\ ft

Therefore, A tree with a height of 5.4 ft is 1 standard deviation above the mean.
⇒
statement:A tree with a height of 4.6 ft is 1 standard deviation above the mean.
(FALSE)
For X =4.6 ft

Therefore, a tree with a height of 4.6 ft is 1 standard deviation below the mean
.
⇒
statement:A tree with a height of 5.8 ft is 2.5 standard deviations above the mean
(FALSE)
For X =5.8 ft

Therefore, a tree with a height of 5.8 ft is 2 standard deviation above the mean.
⇒
statement:A tree with a height of 6.2 ft is 3 standard deviations above the mean.
(TRUE)
For X =6.2\ ft

Therefore, a tree with a height of 6.2 ft is 3 standard deviations above the mean.
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
S= 5? that's at the top of my head