5.1 m
Explanation:
Let's set the ground as our reference point. Let's also call the dropped ball to be ball #1 and its height above the ground at any time t is given by
(1)
where 10 represents its initial height or displacement of 10 m above the ground. At the same time, the displacement of the second ball with respect to the ground
is given by
(2)
At the instant the two balls collide, they will have the same displacement, therefore

or

Solving for t, we get

We can use either Eqn(1) or Eqn(2) to hind the height where they collide. Let's use Eqn(1):


Answer:
The equation of motion is derived based on the Newton’s laws of motion. And it changes accordingly when an object changes with uniform velocity.
Given is that object moves with uniform velocity, that is no change in velocity so there will no acceleration.
As we know
Here, u = v (due to uniform velocity)
.
1st equation of motion is, v = u + at
2nd equation of motion,
3rd equation of motion,
.
Explanation:
Suppose that the cyclist begins his journey from the rest from the top of a wedge with a slope of a degree above the horizontal.
At point A (where it starts its journey), the energy is:
Ea = m * g * h
In other words, energy is only potential.
At point B (located at the bottom of the wedge), the energy is:
Eb = (1/2) * (m) * (v ^ 2)
In other words, the energy is only kinetic.
For energy conservation we have:
Ea = Eb
That is, we have that all potential energy is transformed into kinetic energy.
Which means that the cyclist has less kinetic energy at point A because that's where he has more potential energy.
answer:
the cyclist has less kinetic energy at point A because that's where he has more potential energy.
100 cm is 1 meter. So your answer would be 0.362 meters.
Answer:
Stationary
20N
Explanation:
From the graph, we see that the body traveling is on a fixed position. Therefore, it is a stationary body.
The graph given is a position - time curve.
This curve depict a body changing position with given time.
Since the line of the curve is on a single position, the body is not changing position with the passage of time therefore, it is a stationary object.
B. 20N
From Newton's third law of motion we understand that "action and reaction force are equal but oppositely directed".
Since the person is exerting a force of 20N on the balance.
So, the reaction force by the balance is 20N upward.