By the law of sines, m∠<em>EFG</em> is such that
sin(m∠<em>EFG</em>) / (8 in.) = sin(m∠<em>G</em>) / (7.5 in)
so you need to find m∠<em>G</em>.
The interior angles to any triangle sum to 180°, so
m∠<em>DEG</em> = m∠<em>D</em> + m∠<em>G</em> + 43°
m∠<em>DEG</em> + m∠<em>D</em> + m∠<em>G </em>= 2 (m∠<em>D</em> + m∠<em>G</em>) + 43°
180° = 2 (m∠<em>D</em> + m∠<em>G</em>) + 43°
137° = 2 (m∠<em>D</em> + m∠<em>G</em>)
68.5° = m∠<em>D</em> + m∠<em>G</em>
But ∆<em>DEG</em> is isosceles, so m∠<em>D</em> = m∠<em>G</em>, which means
68.5° = 2 m∠<em>G</em>
34.25° = m∠<em>G</em>
<em />
Then
sin(m∠<em>EFG</em>) = (8 in.) sin(34.25°) / (7.5 in)
m∠<em>EFG</em> ≈ sin⁻¹(0.600325) ≈ 36.8932°
I think it's , true , false , false . the last one is kinda tricky
Answer:
Adding and Subtracting Polynomials. When adding and subtracting polynomials , you can use the distributive property to add or subtract the coefficients of like terms. Use the commutative property to group like terms. (Recall that "like terms" are monomials with the same variables, such as 3 x 2 y and 82 x 2 y .)