Answer:
<u>a) x = 3</u>
<u>b) z = 10</u>
<u>c) p = 2</u>
<u>d) x = 7</u>
<u>e) u = 1</u>
Step-by-step explanation:
a) 2x = 6
Despejamos x dividiendo por 2 a amabos lados de la eacuacion.
(2/2)x = 6/2
<u>x = 3</u>
Si remplazamos x en la ecuación original:
2(3)=6
6 = 6
Queda demostrado.
b) 10 + z = 20
Despejamos z restando 10 en amabos lados de la eacuacion.
10-10+z = 20-10
<u>z = 10</u>
Si remplazamos z en la ecuación original:
10 + 10=20
20 = 20
Queda demostrado.
c) p + 9 = 11
Despejamos p restando 9 en amabos lados de la eacuacion.
p + 9 - 9 = 11-9
<u>p = 2</u>
Si remplazamos p en la ecuación original:
2 + 9 = 11
11 = 11
Queda demostrado.
d) 3x + 8 = 29
Despejamos x restando 8 en amabos lados de la eacuacion y luego divideindo por 3 en ambos lados de la ecuación.
3x+8-8 = 29-8
3x = 21
(3/3)x = 21/3
<u>x = 7</u>
Si remplazamos x en la ecuación original:
3(7) + 8 = 29
21 + 8 = 29
29 = 29
Queda demostrado
e) 2u + 8 = 10
Despejamos u restando 8 en amabos lados de la eacuacion y luego divideindo por 2 en ambos lados de la ecuación.
2u+8-8 = 10-8
2x = 2
(2/2)x = 2/2
<u>x = 1</u>
Si remplazamos x en la ecuación original:
2(1) + 8 = 10
2 + 8 = 10
10 = 10
Queda demostrado
Espero te haya sido de ayuda!
Answer:
my best advice: look at the y-intercepts!
Step-by-step explanation:
when the equations are set out like this, the last number (in this case "+4" and "-2"), represents where they cross the y axis. this gives you a great place to start.
if you plot (0, 4) for the first equation, you can then move right one square and down one square to get the next point in the equation.
the next one starts with (0, -2) and goes right one square and up two
The answer would be B because LWH=V, so taking the information given, L(19) times W(12) would equal 228 and 228 times the H would give us volume so B
Hope this helped ;)
ANSWER
My Answer is in the photo above