Answer:
x=−2 and y=−1
Step-by-step explanation:
<u>Problem:</u>
Solve y=x2;y=−x−3
<u>Steps:</u>
I will solve your system by substitution.
y=1/2x;y=−x−3
Step: Solve y= 1/2x for y:
Step: Substitute 1/2 x for y in y=−x−3:
y=−x−3
1/2x= =−x−3
1/2x+x=−x−3+x(Add x to both sides)
3/2x = -3
3/2x/3/2 = -3/3/2 (Divide both sides by 3/2)
x=−2
Step: Substitute −2 for x in y=1/2x:
y=1/2x
y=1/2(-2)
y=−1(Simplify both sides of the equation)
<u>Answer:</u>
x=−2 and y=−1
Answer:
The value of H is (1/3)
Step-by-step explanation:
i found it by dividing the value of G on 2
Ok so we can see for every 2 cups of medium coffee, the balance goes down 5.30$. So that means that for every coffee, her balance goes down 2.65$. Solving for the x-intercept means how many medium coffees can I get until my balance is 0. First, we have to find the y-int so it's easy. The slope is -2.65 because for every medium coffee, her balance goes down 2.65$. So we have y=-2.65x+b. Plugging in any point, I choose (4,14.40), we get 14.4 = -2.65 × 4 +b. Solving for b we get 25 for the y intercept, meaning the equation is y = -2.65x + 25 . To find the x intercept, we set y=0. So we have 0 = -2.65x+25. Solving for x we get approx. 9.4. We can't have decimals so we round down to 9. So the x int is ≈ 9.4 meaning we can only buy 9 coffee and have a little extra. But, if the problem said how many more coffees can she get, then here is how we do it. Since she already got 4 coffees, and the max is 9, we do 9-4 and we get 5, so she can buy 5 coffeed more.
Answer:
137 + x <= 170
Step-by-step explanation:
The following inequality will describe this scenario.
137 + x <= 170
the variable x in this scenario represents the total number of cars that you will purchase. This number is added to the number of toy cars that you already own which is 137. As long as this sum is less than or equal to 170 then your storage case will hold them.
<span>Let n be the number of taxis in NY. The average distance travelled is 60,000 miles, therefore the middle 95% will have the same average as the population, the reason being the mileage is symmetrically distributed about the mean Therefore the total number of miles in one year for the middle 95% is 60,000 * 0.95 * n
</span><span>The range of miles driven by the middle 95% can be found from the empirical rule that says:
For a normal distribution, approximately 95% of the data points lie within the range plus and minus 2 standard deviations of the population mean. In this case the range is
(60,000-22,000) to (60,000 + 22,000)</span>