Answer:
The answer is D
Explanation:
Fiber cells; cylinder-shaped
Answer:
<em>Hox </em>Gene
Explanation:
First, you're question is very vital, there are many ways in classifying along with identifying all living organisms that includes; morphological analysis, molecular systematics (studying the similarities and differences of the genetic data such in the sequences of DNA, RNA, and rRNA ), homology, cladistics, etc. based on phylogenetic tree, which the study of the evolutionary among various species.
But through it said that all living organisms shared one common ancestor. However, what makes them different from one to another is the homeotic genes that called <em>Hox </em>Genes; which specify the fate of a particular segment or region of the body, meaning the number and arrangements of the<em> Hox</em> genes varies considerably among different types of animals.
For instance, Sponges have at least one homologous to<em> Hox</em> genes, also insects have nine or more <em>Hox </em>genes resulting in multiple <em>Hox </em>genes occur in a cluster in which the genes are close to each other along a chromosome. Therefore, increases in the number of<em> Hox</em> genes have been instrumental in the evolution of many animals species with greater complexity in body structure.
Overall, more <em>Hox</em> genes, more complexity in body structure resulting in the differences of their morphological structure.
Hope that answered your question!
The independent variable is a variable that can be stood alone. So therefore, the independent variable would be how long it takes to parachute.
Answer:
Explanation:
Although protons resemble other positive ions such as Na+ and K+ in their movement across membranes, in some respects they are unique. Hydrogen atoms are by far the most abundant type of atom in living organisms; they are plentiful not only in all carbon-containing biological molecules, but also in the water molecules that surround them. The protons in water are highly mobile, flickering through the hydrogen-bonded network of water molecules by rapidly dissociating from one water molecule to associate with its neighbor, Protons are thought to move across a protein pump embedded in a lipid bilayer in a similar way: they transfer from one amino acid side chain to another, following a special channel through the protein.