Your equation would be like this:
y=11x+300
because 11 depends on 'X" how many miles he walks and then just add 300 to that because that is the fixed amount
I hope I've helped!
5x - 9 = 26
5x - 9 + 9 = 26 + 9
5x = 35
5x/5 = 35/5
X = 7
Answer:
The system has infinitely many solutions

Step-by-step explanation:
Gauss–Jordan elimination is a method of solving a linear system of equations. This is done by transforming the system's augmented matrix into reduced row-echelon form by means of row operations.
An Augmented matrix, each row represents one equation in the system and each column represents a variable or the constant terms.
There are three elementary matrix row operations:
- Switch any two rows
- Multiply a row by a nonzero constant
- Add one row to another
To solve the following system

Step 1: Transform the augmented matrix to the reduced row echelon form
![\left[ \begin{array}{cccc} 1 & -3 & -2 & 0 \\\\ -1 & 2 & 1 & 0 \\\\ 2 & 3 & 5 & 0 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%20-3%20%26%20-2%20%26%200%20%5C%5C%5C%5C%20-1%20%26%202%20%26%201%20%26%200%20%5C%5C%5C%5C%202%20%26%203%20%26%205%20%26%200%20%5Cend%7Barray%7D%20%5Cright%5D)
This matrix can be transformed by a sequence of elementary row operations
Row Operation 1: add 1 times the 1st row to the 2nd row
Row Operation 2: add -2 times the 1st row to the 3rd row
Row Operation 3: multiply the 2nd row by -1
Row Operation 4: add -9 times the 2nd row to the 3rd row
Row Operation 5: add 3 times the 2nd row to the 1st row
to the matrix
![\left[ \begin{array}{cccc} 1 & 0 & 1 & 0 \\\\ 0 & 1 & 1 & 0 \\\\ 0 & 0 & 0 & 0 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%201%20%26%200%20%5C%5C%5C%5C%200%20%26%201%20%26%201%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Barray%7D%20%5Cright%5D)
The reduced row echelon form of the augmented matrix is
![\left[ \begin{array}{cccc} 1 & 0 & 1 & 0 \\\\ 0 & 1 & 1 & 0 \\\\ 0 & 0 & 0 & 0 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%201%20%26%200%20%5C%5C%5C%5C%200%20%26%201%20%26%201%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Barray%7D%20%5Cright%5D)
which corresponds to the system

The system has infinitely many solutions.

Answer:
x² + 2x + (3 / (x − 1))
Step-by-step explanation:
Start by setting up the division:
.........____________
x − 1 | x³ + x² − 2x + 3
Start with the first term, x³. Divided by x, that's x². So:
.........____x²______
x − 1 | x³ + x² − 2x + 3
Multiply x − 1 by x², subtract the result, and drop down the next term:
.........____x²______
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Repeat the process over again. First term is 2x². Divided by x is 2x. So:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Multiply, subtract the result, and drop down the next term:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
.................-(2x² − 2x)
.................---------------
.....................................3
x doesn't divide into 3, so that's the remainder.
Therefore, the answer is:
x² + 2x + (3 / (x − 1))