1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrey2020 [161]
3 years ago
13

What is a fraction of 10\3

Mathematics
2 answers:
melamori03 [73]3 years ago
3 0
It would simplify to 3 1/3.
Sidana [21]3 years ago
3 0
It would be: 
 3 1/2 
!!!!!!!!!
You might be interested in
What is (1/25)^x-2/5-10=115
dalvyx [7]
1.50099254



hope this helps
6 0
3 years ago
3 Sarah left home at 10:00 and cycled north in
nekit [7.7K]

Answer:

a) From 10 to 11, Sarah rode 12 km in one hour. That means her velocity was 12 km/hr.

b) Sarah passed by her home at 12:45.

c) From 12 to 13, Sarah rode 15 km. Thus, her velocity was 15 km/hr. From 13 to 14 she rode 3 km. Thus, her velocity was 3 km/hr.

d) Her average velocity was 12+0+15+3/4, or 30/4 which is 7.5 km/hr.

3 0
3 years ago
PLEASE HELP MEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
amm1812

Answer:

5 pounds

Step-by-step explanation:

Because if you do 1 1/4 x 4, it gives you 5.

7 0
3 years ago
Read 2 more answers
Identify the corresponding parts.
zheka24 [161]

Answer:

S,Z,F

Step-by-step explanation:

i just did it

4 0
3 years ago
Evaluate the limit with either L'Hôpital's rule or previously learned methods.lim Sin(x)- Tan(x)/ x^3x → 0
Vsevolod [243]

Answer:

\dfrac{-1}{6}

Step-by-step explanation:

Given the limit of a function expressed as \lim_{ x\to \ 0} \dfrac{sin(x)-tan(x)}{x^3}, to evaluate the following steps must be carried out.

Step 1: substitute x = 0 into the function

= \dfrac{sin(0)-tan(0)}{0^3}\\= \frac{0}{0} (indeterminate)

Step 2: Apply  L'Hôpital's rule, by differentiating the numerator and denominator of the function

= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ sin(x)-tan(x)]}{\frac{d}{dx} (x^3)}\\= \lim_{ x\to \ 0} \dfrac{cos(x)-sec^2(x)}{3x^2}\\

Step 3: substitute x = 0 into the resulting function

= \dfrac{cos(0)-sec^2(0)}{3(0)^2}\\= \frac{1-1}{0}\\= \frac{0}{0} (ind)

Step 4: Apply  L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 2

= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ cos(x)-sec^2(x)]}{\frac{d}{dx} (3x^2)}\\= \lim_{ x\to \ 0} \dfrac{-sin(x)-2sec^2(x)tan(x)}{6x}\\

=  \dfrac{-sin(0)-2sec^2(0)tan(0)}{6(0)}\\= \frac{0}{0} (ind)

Step 6: Apply  L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 4

= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ -sin(x)-2sec^2(x)tan(x)]}{\frac{d}{dx} (6x)}\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^2(x)sec^2(x)+2sec^2(x)tan(x)tan(x)]}{6}\\\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^4(x)+2sec^2(x)tan^2(x)]}{6}\\

Step 7: substitute x = 0 into the resulting function in step 6

=  \dfrac{[ -cos(0)-2(sec^4(0)+2sec^2(0)tan^2(0)]}{6}\\\\= \dfrac{-1-2(0)}{6} \\= \dfrac{-1}{6}

<em>Hence the limit of the function </em>\lim_{ x\to \ 0} \dfrac{sin(x)-tan(x)}{x^3} \  is \ \dfrac{-1}{6}.

3 0
3 years ago
Other questions:
  • A cone-shaped ten has a diameter of 12 ft and a height of 6 ft
    8·1 answer
  • Hailey's family is driving to her aunt's house. The family travels 239.4 miles between the hours of 9:10 am and 1:40 pm. What eq
    7·1 answer
  • If the radius of a circle 3 meters. what is the circles diameter?
    9·2 answers
  • Add 5 to me. Then divide by 7. If you add 12 and then subtract 7 you get 10. What number am I
    12·2 answers
  • How do i use permutation on 5P3?
    13·1 answer
  • Taji has a total of 98 quarters and dimes. their value is $18.20 how many quarters does taji have?
    5·1 answer
  • What is the value of s?
    9·1 answer
  • If 8 bags of grapes cost $20.00, how much do 3 bags of grapes cost?
    9·1 answer
  • Pls Help <br>Solve for X<br>​
    5·1 answer
  • 2. You are placing mulch in your yard, and you find that pine chips cost $5 per bag, while oak chips cost $2 per bag. You want t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!