You can use this formula <span>P(AorB) = P(A) + P(B) - P(AandB)
Given:
35 LG (14 F & 21 M)
44 SB (28 F & 16 M)
Req:
- the probability that it is a female (F) or a sky blue (SB)
Sol:
</span>P(F or SB) = P(F) + P(SB) - P(F and SB)
= [(14 F + 28 F)/(35 + 44)] + [(44 SB)/(35 + 44)] - [(28 F)/(35 + 44)]
= 53.16 + 55.70 - 35.44
= 73.42%
You have to deduct 28 female parakeets from 44 sky blue parakeets because the 28 parakeets are already accounted for in the female parakeets. You can also think of how many ways you can choose a female parakeet and a sky blue parakeet. Add all female parakeets (14 + 28) = 42. Sky blue parakeet equaled to 44. Minus the 28 female parakeets included in the sky blue parakeet to avoid double counting. 42 + 44 - 28 = 58 divided by 79 (35 + 44) total parakeets = 73.42%
Answer: Second option.
Step-by-step explanation:
Given the folllowing Linear Equation:
You need to substitute the coordinates of each point given in the options into the equation and then evaluate.
1) Substituting into the equation, you get:
2) Substituting the point . you get:
3) Apply the same procedure using the point :
4) Apply the same procedure using the point
5) Substituting into the equation:
Therefore, the point is not on the given line.
Answer:
x < -4 ∪ x > 4
Step-by-step explanation:
The absolute value function is shifted down 3 units. The solution space is values of x where y = |x|-3 is greater than 1. The solution is shown in red in the attachments, and the left and right (dashed) sides of the inequality are shown in blue.
__
I personally prefer to rewrite the inequality so the comparison is to <em>zero</em>. That is done in the second attachment, which rewrites it to ...
|x| -4 > 0
by subtracting 1 from both sides. It is often easier to read the values of x-intercepts than it is to read the coordinate values where lines cross each other.
Answer: (, 0), (, 0)
Step-by-step explanation: Let me know if you need an explanation.