Answer:
see answer below
Explanation:
the equation is given by
k=ko* e^(-Q/RT)
then replacing the known values
k=1200 min⁻¹ e^[-8000 cal/mole/ (1.987 cal/mole K *T)]
then replacing values of T every 50 K from 100 to 500 K we get the series of values
![\left[\begin{array}{ccc}T&k\\100&3.924*10^{-15} min ^{-1} \\150&2.643*10^{-9} min ^{-1} \\200&2.17*10^{-6} min ^{-1} \\250&1.216*10^{-4} min ^{-1} \\300&1.781*10^{-3} min ^{-1} \\350&0.012 min ^{-1} \\400&0.051 min ^{-1} \\450&0.156 min ^{-1} \\500&0.382 min ^{-1} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DT%26k%5C%5C100%263.924%2A10%5E%7B-15%7D%20min%20%5E%7B-1%7D%20%5C%5C150%262.643%2A10%5E%7B-9%7D%20min%20%5E%7B-1%7D%20%5C%5C200%262.17%2A10%5E%7B-6%7D%20min%20%5E%7B-1%7D%20%5C%5C250%261.216%2A10%5E%7B-4%7D%20min%20%5E%7B-1%7D%20%5C%5C300%261.781%2A10%5E%7B-3%7D%20min%20%5E%7B-1%7D%20%5C%5C350%260.012%20min%20%5E%7B-1%7D%20%5C%5C400%260.051%20min%20%5E%7B-1%7D%20%5C%5C450%260.156%20min%20%5E%7B-1%7D%20%5C%5C500%260.382%20min%20%5E%7B-1%7D%20%5Cend%7Barray%7D%5Cright%5D)
Answer:
200 Ω
Explanation:
Hi there!
Please see below for the circuit diagram.
<u>1) Find the total resistance of the resistors in parallel</u>
Total resistance in parallel equation: 
Both the resistors measure 200 Ω. Plug these into the equation as R₁ and R₂:

Therefore, the total resistance of the resistors in parallel is 100 Ω.
<u>2) Find the total resistance of the circuit</u>
Now, to find the total resistance of the circuit, we must add the 100 Ω we just solved for and the 100 Ω for the other resistor placed in series:
100 Ω + 100 Ω = 200 Ω
Therefore, the total resistance of the circuit is 200 Ω.
I hope this helps!