Answer:
Option A
Explanation:
Technology is something that has made the life of human being easy by simplifying all task and activities such as manufacturing, accounting, tracking, packaging etc.
Today all the industrial sector ranging from pharmaceuticals, chemical, IT, Manufacturing, Electronics etc, remains unaffected by the technology and its interventions specially after the pandemic outbreak.
Hence, it can be said that technology has made our lives better .
25% is the probability of a homozygous recessive offspring if both parents are heterozygous.
Answer:
The correct answer is -
1. c. both
2. b. gluconeogenesis
3. d. neither
4. b. gluconeogenesis
5. a. glycolysis
6. c. both
7. a. glycolysis
8. d. neither
Explanation:
Gluconeogenesis is the formation or synthesis of glucose while glycolysis is the conversion of glucose into pyruvate. Gluconeogenesis requires an enzyme for a non-reversal reaction which is not required in glycolysis.
Glyceraldehyde 3-phosphate dehydrogenase is an enzyme present in glycolysis that converts glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate. It is a reversible reaction, this enzyme also present during gluconeogenesis converts 1,3-bisphosphoglycerate to glyceraldehyde 3-phosphate.
Glucose 6-phosphate to glucose during gluconeogenesis by glucose-6-phosphatase. Alcohol dehydrogenase is used for the conversion of ethanol into acetaldehyde and neither present in glyconeogenesis nor glycolysis. Oxaloacetate converts to phosphoenol pyruvate during gluconeogenesis by Phosphoenol pyruvate carboxykinase.
Fructose 6-phosphate changes into fructose 1,6-bisphosphate by Phosphofructokinase-1 during glycolysis.
Phosphoglycerate mutase is present in both pathways during glycolysis and during gluconeogenesis. This enzyme converts 3-phosphoglycerate to 2-phosphoglycerate and also converts 2-phosphoglycerate to 3-phosphoglycerate in glycolysis and gluconeogenesis respectively.
Hexokinase converts glucose to glucose 6-phosphate during glycolysis. However, Pyruvate dehydrogenase neither present in glycolysis nor gluconeogenesis.
Answer:
reactants come out of a reaction