As soon as I read this, the words "law of cosines" popped
into my head. I don't have a good intuitive feeling for the
law of cosines, but I went and looked it up (you probably
could have done that), and I found that it's exactly what
you need for this problem.
The "law of cosines" relates the lengths of the sides of any
triangle to the cosine of one of its angles ... just what we need,
since we know all the sides, and we want to find one of the angles.
To find angle-B, the law of cosines says
b² = a² + c² - 2 a c cosine(B)
B = angle-B
b = the side opposite angle-B = 1.4
a, c = the other 2 sides = 1 and 1.9
(1.4)² = (1)² + (1.9)² - (2 x 1 x 1.9) cos(B)
1.96 = (1) + (3.61) - (3.8) cos(B)
Add 3.8 cos(B) from each side:
1.96 + 3.8 cos(B) = 4.61
Subtract 1.96 from each side:
3.8 cos(B) = 2.65
Divide each side by 3.8 :
cos(B) = 0.69737 (rounded)
Whipping out the
trusty calculator:
B = the angle whose cosine is 0.69737
= 45.784° .
Now, for the first time, I'll take a deep breath, then hold it
while I look back at the question and see whether this is
anywhere near one of the choices ...
By gosh ! Choice 'B' is 45.8° ! yay !
I'll bet that's it !
Answer:
220
Step-by-step explanation:
V= whl = 5 · 11 · 4 = 220
Answer:
the norm of V = =11.357816691601..
Step-by-step explanation:




Answer:
a - b2
Step-by-step explanation:
STEP 1
:
Trying to factor as a Difference of Squares:
1.1 Factoring: a-b2
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : a1 is not a square !!
Ruling : Binomial can not be factored as the difference of two perfect squares
Final result :
a - b2
<u><em>HOPE THIS HELPS!</em></u>
<u><em>PLEASE MARK BRAINLIEST! :)</em></u>