Answer:
7. r = -5
8. x = -1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define</u>
r + 2 - 8r = -3 - 8r
<u>Step 2: Solve for </u><em><u>r</u></em>
- Combine like terms:                    -7r + 2 = -3 - 8r
- Add 8r to both sides:                   r + 2 = -3
- Subtract 2 on both sides:            r = -5
<u>Step 3: Check</u>
<em>Plug in r into the original equation to verify it's a solution.</em>
- Substitute in <em>r</em>:                    -5 + 2 - 8(-5) = -3 - 8(-5)
- Multiply:                              -5 + 2 + 40 = -3 + 40
- Add:                                    -3 + 40 = -3 + 40
- Add:                                    37 = 37
Here we see that 37 does indeed equal 37.
∴ r = -5 is a solution of the equation.
<u>Step 4: Define equation</u>
-4x = x + 5
<u>Step 5: Solve for </u><em><u>x</u></em>
- Subtract <em>x</em> on both sides:                    -5x = 5
- Divide -5 on both sides:                      x = -1
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>:                    -4(-1) = -1 + 5
- Multiply:                               4 = -1 + 5
- Add:                                     4 = 4
Here we see that 4 does indeed equal 4.
∴ x = -1 is a solution of the equation.
 
        
                    
             
        
        
        
Answer:x= -3 {x=1 tx= -2 {x =1
Step-by-step explanation:
 
        
             
        
        
        
Answer:


Step-by-step explanation:
for this equation 
a=3
b= -5
c = -7
The sum of equal to 

and the product is equal to 

. All you do is replace the values. You can prove both of those using the quadratic formula. 
 
        
             
        
        
        
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
Answer:
It is in standard form!!!
:)
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
 
        
             
        
        
        
This is an example of an expansion. The original figure is enlarged using proportional reasoning.
Each side length is multiplied by 6 to get the new poster.