Answer:
The width is 50 yards and the length is 141 yards.
Step-by-step explanation:
Let's call: L the length of the field and W the width of the field.
From the sentence, the perimeter of the rectangular playing field is 382 yards we can formulate the following equation:
2L + 2W = 382
Because the perimeter of a rectangle is the sum of two times the length with two times the width.
Then, from the sentence, the length of the field is 9 yards less than triple the width, we can formulate the following equation:
L = 3W - 9
So, replacing this last equation on the first one and solving for W, we get:
2L + 2W = 382
2(3W - 9) + 2W = 382
6W -18 +2W = 382
8W - 18 = 382
8W = 382 + 18
8W = 400
W = 400/8
W = 50
Replacing W by 50 on the following equation, we get:
L = 3W - 9
L = 3(50) - 9
L = 141
So, the width of the rectangular field is 50 yards and the length is 141 yards.
Answer:
x = 0
y = -4
negative 4 cuz the line goes down, meaning it's negative
Answer:the anewer is
Step-by-step explanation:
54.4 dollars
Answer:
and 
Step-by-step explanation:
Given
See attachment for complete question
Required
Determine the equilibrium solutions
We have:


To solve this, we first equate
and
to 0.
So, we have:


Factor out R in 

Split
or 
or 
Factor out W in 

Split
or 
Solve for R


Make R the subject


When
, we have:




Collect like terms

Solve for W




When
, we have:



Collect like terms

Solve for R


So, we have:

When
, we have:





So, we have:

Hence, the points of equilibrium are:
and 