Answer:

Step-by-step explanation:
<u>The full question:</u>
<em>"A committee has eleven members. there are 3 members that currently serve as the boards chairman, ranking members, and treasurer. each member is equally likely to serve in any of the positions. Three members are randomly selected and assigned to be the new chairman, ranking member, and treasurer. What is the probability of randomly selecting the three members who currently hold the positions of chairman, ranking member, and treasurer and reassigning them to their current positions?"</em>
<em />
<em />
The permutation of choosing 3 members from a group of 11 would be:
P(n,r) = 
Where n would be the total [in this case n is 11] & r would be 3
Which is:
P(11,3) = 
So there are total of 990 possible way and there is ONLY ONE WAY for them to be reassigned. Hence the probability would be:
1/990
Answer:
10^3=1000
Step-by-step explanation:
base^ans=number attatched to the log
Answer:
a+8
Step-by-step explanation:
"sum" tells you to add the two numbers together.
Answer:
1: 3 ratio of the volume of the cone to the volume of the cylinder
Step-by-step explanation:
Volume of cone(V) is given by:

where, r is the radius and h is the height of the cone.
Volume of cylinder(V') is given by:

where, r' is the radius and h' is the height of the cylinder.
As per the statement:
A cylinder and a cone have congruent heights and radii.
⇒r = r' and h = h'
then;

⇒
Therefore, the ratio of the volume of the cone to the volume of the cylinder is, 1 : 3
Answer:
623 miles
Step-by-step explanation:
6.23*100= 623 miles