Answer:
1.
-3x + 8y = -5
6x + 2y = -8
Set the equations to a common variable.
-3x + 8y = -5 → 8y = 3x - 5 → y = 3/8x - 5/8
6x + 2y = -8 → 2y = -6x - 8 → y = -3x - 4
Set the equations equal to each other.
3/8x - 5/8 = -3x - 4
Combine like terms.
3x + 3/8x = -4 + 5/8
3.375x = -3.375
Divide by 3.375
x = -1
Plug x back in to find y.
-3x + 8y = -5
-3(-1) + 8y = -5
3 + 8y = -5
8y = -8
y = -1
answer: (-1, -1)
2.
3x + 2y = -16
-3x - 8y = 46
Set the equations to a common variable.
3x + 2y = -16 → 2y = -3x - 16 → y = -3/2x - 8
-3x - 8y = 46 → -8y = 3x + 46 → y = -3/8x - 23/4
Set the equations equal to each other.
-3/2x - 8 = -3/8x - 23/4
Combine like terms.
-9/8x = 9/4
or
-1.125x = 2.25
Divide by -1.125
x = -2
Plug x back in to find y.
3(-2) + 2y = -16
-6 + 2y = -16
2y = -10
y = -5
answer: (-2, -5)
-12y+14-9y=14
-21y=0
y=0, x=7
Just rank every pair of numbers for example:
The first one is: 1,-3.
2•1-3•-3>12
2+9>12
11>12
That's Incorrect. The first pair of numbers doesn't match the inequality.
Now do the same thing to all the other pairs of numbers.
(11k^4 - 4m) + (-2k^4 - 15m)
Add -2k^4 to 11k^4. This would be the same as subtracting 2k^4 from 11k^4
9k^4 - 4m - 15m
Add -15m to -4m. This would be the same as subtracting 15m from -4m
Final Answer: 9k^4 - 19m
Word Form: Nine times the variable k to the forth power minus nineteen times the variable m.