Answer:
Volume of a cup
The shape of the cup is a cylinder. The volume of a cylinder is:
\text{Volume of a cylinder}=\pi \times (radius)^2\times heightVolume of a cylinder=π×(radius)
2
×height
The diameter fo the cup is half the diameter: 2in/2 = 1in.
Substitute radius = 1 in, and height = 4 in in the formula for the volume of a cylinder:
\text{Volume of the cup}=\pi \times (1in)^2\times 4in\approx 12.57in^3Volume of the cup=π×(1in)
2
×4in≈12.57in
3
2. Volume of the sink:
The volume of the sink is 1072in³ (note the units is in³ and not in).
3. Divide the volume of the sink by the volume of the cup.
This gives the number of cups that contain a volume equal to the volume of the sink:
\dfrac{1072in^3}{12.57in^3}=85.3cups\approx 85cups
12.57in
3
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
Let

. Then

and

are two fundamental, linearly independent solution that satisfy


Note that

, so that

. Adding

doesn't change this, since

.
So if we suppose

then substituting

would give

To make sure everything cancels out, multiply the second degree term by

, so that

Then if

, we get

as desired. So one possible ODE would be

(See "Euler-Cauchy equation" for more info)
Answer:
8 hours worked, 64 dollars
56 dollars, 7 hours worked
themepark:
5 hours worked, 45 dollars
6 hours worked, 54 dollars
8 hours worked, 72 dollars
working at the themepark earns 5 extra dollars when they work for 5 hours.
35/8 = 4.376 5/3 = 1.666… 4.376/1.666…
Therefore 2.625 pieces