1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
3 years ago
5

5n+5=45 what does n =

Mathematics
1 answer:
joja [24]3 years ago
4 0
5n+5=45
Subtract 5 from both sides
5n=40
Divide both sides by 5
n=8

I hope this helps
You might be interested in
What is 645 round to the nearest ten
madreJ [45]
The answer is 650 have a nice day
3 0
2 years ago
Read 2 more answers
A rocket is launched from a tower. The height of the rocket, y in feet, is related to the
crimeas [40]

Answer:

332=y

Step-by-step explanation:

5 0
2 years ago
What is. C(3a+b) and what does it equal to
11Alexandr11 [23.1K]
It equals 3a(c)+b(c)
4 0
3 years ago
Which is a linear graph, and which is a nonlinear graph?
Vinil7 [7]

Answer:

Blue is linear; orange is nonlinear

Step-by-step explanation:

linear is straight

nonlinear is not

7 0
3 years ago
(6x-5y+4)dy+(y-2x-1)dx=0​
Len [333]

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> + (<em>y</em> - 2<em>x</em> - 1) d<em>x</em> = 0

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> = (2<em>x</em> - <em>y</em> + 1) d<em>x</em>

d<em>y</em>/d<em>x</em> = (2<em>x</em> - <em>y</em> + 1) / (6<em>x</em> - 5<em>y</em> + 4)

Let <em>X</em> = <em>x</em> - <em>a</em> and <em>Y</em> = <em>y</em> - <em>b</em>. We want to find constants <em>a</em> and <em>b</em> such that

d<em>Y</em>/d<em>X</em> = (a rational function)

where the numerator and denominator on the right side are free of constant terms. Substituting <em>x</em> and <em>y</em> in the equation, we have

d<em>Y</em>/d<em>X</em> = (2 (<em>X</em> + <em>a</em>) - (<em>Y</em> + <em>b</em>) + 1) / (6 (<em>X</em> + <em>a</em>) - 5 (<em>Y</em> + <em>b</em>) + 4)

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em> + 2<em>a</em> - <em>b</em> + 1) / (6<em>X</em> - 5<em>Y</em> + 6<em>a</em> - 5<em>b</em> + 4)

Then we solve for <em>a</em> and <em>b</em> in the system,

2<em>a</em> - <em>b</em> + 1 = 0

6<em>a</em> - 5<em>b</em> + 4 = 0

==>   <em>a</em> = -1/4 and <em>b</em> = 1/2

With these constants, the equation reduces to

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em>) / (6<em>X</em> - 5<em>Y</em>)

Now substitute <em>Y</em> = <em>VX</em> and d<em>Y</em>/d<em>X</em> = <em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> :

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2<em>X</em> - <em>VX</em>) / (6<em>X</em> - 5<em>VX</em>)

The equation becomes separable after some simplification:

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>) - <em>V</em>

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em> - (6 - 5<em>V</em>)) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (4<em>V</em> - 4) / (6 - 5<em>V</em>)

- (5<em>V</em> - 6) / (4<em>V</em> - 4) d<em>V</em> = 1/<em>X</em> d<em>X</em>

Integrate both sides:

-5/4 <em>V</em> + 1/4 ln|4<em>V</em> - 4| = ln|<em>X</em>| + <em>C</em>

Extract a constant from the logarithm on the left:

-5/4 <em>V</em> + 1/4 (ln(4) + ln|<em>V</em> - 1|) = ln|<em>X</em>| + <em>C</em>

-5/4 <em>V</em> + 1/4 ln|<em>V</em> - 1| = ln|<em>X</em>| + <em>C</em>

-5<em>V</em> + ln|<em>V</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Get this back in terms of <em>Y</em> :

-5<em>Y/X</em> + ln|<em>Y/X</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Now get the solution in terms of <em>y</em> and <em>x</em> :

-5 (<em>y</em> - 1/2)/(<em>x</em> + 1/4) + ln|(<em>y</em> - 1/2)/(<em>x</em> + 1/4) - 1| = 4 ln|<em>x</em> + 1/4| + <em>C</em>

<em />

With some manipulation of constants and logarithms, and a bit of algebra, we can rewrite this solution as

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|<em>x</em> + 1/4| + 4 ln(4) + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| - ln|4<em>x</em> + 1| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| = 5 ln|4<em>x</em> + 1| + <em>C</em>

8 0
3 years ago
Other questions:
  • Find the value that completes the ordered pair to describe the transformation of f(x) to g (x).
    9·1 answer
  • 1-8n-6n&gt;1<br> Solve by simplying into shorter equation
    9·2 answers
  • What is the intersection of plane STXW and plane SVUT
    5·1 answer
  • Whats 4 ways to make 23 cents using dimes,nickels, and pennies
    6·1 answer
  • The product of two consecutive negative integers is 1122. What are the numbers? The product of two consecutive negative integers
    6·1 answer
  • 8(x + 5) = 16
    14·1 answer
  • Use the graph below to determine the number of solutions the system has. 2x = 2y - 6 and y = x - 2
    8·1 answer
  • What is an equation of the line that passes through the points (6,4) and
    10·1 answer
  • Chris has a bag of M&amp;Ms. 7 are brown, 3 are
    15·2 answers
  • PLEASE HELP!!! 30 POINTS TO THE PERSON WHO GETS THIS RIGHT!!!
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!