Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)
The answer is A you can check in the calculator. 12/340 = 0.035 and 340/12 = 28.33 . 28.33 isn’t a option so the answer is A
Answer :
c = 10 radical 2
Step-by-step explanation:
10^2 + 10^2 = c^2
100 + 100 = c^2
200 = c^2
Answer:
45.27feet
Step-by-step explanation:
Given the height of the balloon (in feet) represented by the equation h=−16t2+28.7t+32.4, where t is the time (in seconds)
Note that the velocity of the balloon at maximum height is zero, hence;
v = dh/dt =0
-32t+28.7 = 0
-32t = -28.7
t = 28.7/32
t = 0.897secs
Get the maximum height
Recall that h=−16t²+28.7t+32.4
h = -16(0.897)²+28.7(0.897)+32.4
h= -12.87+25.74+32.4
h = 45.27feet
Hence the maximum height reached is 45.27feet