Answer:
Proteoglycans are a major component of compact connective tissues but are relatively unimportant in watery tissues such as the jellylike substance in the interior of the eye.
Explanation:
these are protein that is divided into two classes which are called large ans small Proteoglycans.
The large proteoglycans has a large number of highly sulfated glycosaminoglycan side-chains that tends to hold water and whereby making the tendon to resist compression while the small proteoglycans are known to have a relationship with collagen fibrils which are known to regulate collagen fibril diameters. they help in signal regulation usually from the angle of intracellular compartments. the are known great for their large diversity especially in terms of different cores and different numbers of GAGs with different lengths and composition.
Answer:
they ensure valid results
Calls Can Get Damaged, OR Age And Die. We Wouldn't Be "Us" If We Didn't Have Cells. Hope That Helps
<h2>Urea </h2>
Explanation:
Urea is a small nitrogenous compound which is the main end product of protein catabolism in mammals
- Urea is a nitrogen-containing substance normally cleared from the blood by the kidney into the urine
- It is made predominantly in the liver from ammonia and bicarbonate and is one of the main components of urine
- The rate of synthesis varies from 300 to 600 mmol/day depending on the protein intake
- All of this urea eventually finds its way into the urine
- Because urea makes up a large part of the obligatory solute excretion, its osmotic pressure requires significant volumes of water to carry the urea
- Urea passively crosses biological membranes, but its permeability is low because of its low solubility in the lipid bilayer
- Some cells speed up this process through urea transporters, which move urea by facilitated diffusion
- Urea is passively reabsorbed in the proximal tubule, but its route of transport is not clear
- Urea transporters have not yet been identified for the proximal tubule