Answer:
55 decrease by 5 is 50, or 55 - 5 = 50.
Step-by-step explanation:
Let x represent the missing number.
When you hear the words decrease, minus, that tells you to subtract.
Before we subtract, if there is a variable, we must do the opposite of subtraction, we need to add.
50 + 5 = x
Which means x = 50 + 5.
50 + 5 = 55.
Therefore, x = 55.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Find points from graph.</em>
Point (2, 0)
Point (5, -1)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [SF]:

- [Fraction] Subtract:

vi is going in the positive direction (up). (That's my choice). a (acceleration) is going in the minus direction (down). The directions could be reversed.
Givens
vi = 160 ft/s
vf = 0 (the rocket stops at the maximum height.)
a = - 9.81 m/s
t = ????
Remark
YOu have 4 parameters between the givens and what you want to solve. Only 1 equation will relate those 4. Always always list your givens with these problems so you can pick the right equation.
Equation
a = (vf - vi)/t
Solve
- 32 = (0 - 160)/t Multiply both sides by t
-32 * t = - 160 Divide by -32
t = - 160/-32
t = 5
You will also need to solve for the height to answer part B
t = 5
vi = 160 m/s
a = - 32
d = ???
d = vi*t + 1/2 a t^2
d = 160*5 + 1/2 * - 32 * 5^2
d = 800 - 400
d = 400 feet
Part B
You are at the maximum height. vi is 0 this time because you are starting to descend.
vi = 0
a = 32 m/s^2
d = 400 feet
t = ??
formula
d = vi*t + 1/2 a t^2
400 = 0 + 1/2 * 32 * t^2
400 = 16 * t^2
400/16 = t^2
t^2 = 25
t = 5 sec
The free fall takes the same amount of time to come down as it did to go up. Sort of an amazing result.