The true answer of your question is :
OH : HYDROXYL GROUP
NH2 : AMINO GROUP
CH3 : METHYL GROUP ( but in rather broader terms, that functional group of formula CnH2n+1 where n is an integer is called ALKYL GROUP where by substituting n by 1,2,3... we obtain methyl for n = 1, ethyl for n = 2, and propyl for n = 3 )
COOH : CARBOXYL GROUP is the correct answer since carbonyl is characterized by the presence of functional group C=O in general the formula of the compound would be
R-C=O-R’ where R and R’ are alkyl groups like methyl for example. However the carboxyl group could be thought of as a summation of carbonyl + hydroxyl ( CO + OH ) resulting thus in COOH.
I hope you’ll understand everything, anyway if not i’m always here to help. ♥️
Answer: plants
Explanation: it’s simple, photosynthesis
In a clinical situation where it is essential to control microbial growth that includes both mycobacteria and endospores, the chemical <span>agent that would be the most effective to guarantee the broadest disinfection are chlorines.
Chlorine (Cl) is a yellow-green gas often used for disinfection in its liquid form. </span>
Answer:
The age of the cell
Explanation:
Assuming your question was meant to be "Which of the following is NOT a difference between Prokaryotic and Eukaryotic cells?", everything except the age is different.
Prokaryotes are simple cells that have no nucleus and are generally small. Eukaryotes are complex cells that have a nucleus, organelles, and are much bigger than prokaryotes.
Answer:
This question lacks options, however, it can be answered based on general understanding of the topic
The answer is SUBSTITUTION MUTATION
Explanation:
A mutation is any change that occurs in the nucleotide sequence of a gene. Mutation can be of different types depending on how it occurs. One type of mutation is SUBSTITUTION MUTATION, which is a mutation in which one or more nucleotide base is replaced by another in the sequence.
Nucleotide bases are read in a group of three called CODON. Each of these codons specify amino acid. Hence, if the nucleotide base sequence is altered during mutation, the amino acid sequence is altered likewise. In this case where the original amino acid sequence is: Met-Ala-Gln-Arg-Glu-Leu, the mutation affected the nucleotide bases coding for Arginine (Arg), hence changing it to Glycine (Gly).
This means that a base substitution mutation occured, replacing the amino acid Arginine with Glycine in the mutated sequence.