Answer: 5 1/30
Step-by-step explanation:
8 + 4/5 - 2/3 - 3 - 1/10 = 5 + 1/30
Answer:
C = 24.5 in
Step-by-step explanation:
Formula to find the circumference of a circle is :
C = 2πr
Here,
r ⇒ radius
So let us solve now.
C = 2πr
C = 2 × π × r
C = 2 × 3.14 × 3.9
C = 24.492 in
So, they've asked for nearest 10th.
Therefore, the answer will be 24.5 in.
Hope this helps you :-)
Let me know if you have any other questions :-)
Answer:
The 13th term is 81<em>x</em> + 59.
Step-by-step explanation:
We are given the arithmetic sequence:

And we want to find the 13th term.
Recall that for an arithmetic sequence, each subsequent term only differ by a common difference <em>d</em>. In other words:

Find the common difference by subtracting the first term from the second:

Distribute:

Combine like terms. Hence:

The common difference is (7<em>x</em> + 5).
To find the 13th term, we can write a direct formula. The direct formula for an arithmetic sequence has the form:

Where <em>a</em> is the initial term and <em>d</em> is the common difference.
The initial term is (-3<em>x</em> - 1) and the common difference is (7<em>x</em> + 5). Hence:

To find the 13th term, let <em>n</em> = 13. Hence:

Simplify:

The 13th term is 81<em>x</em> + 59.
Answer:
D
Step-by-step explanation:
The diagram shows Pascal's triangle. Pascal's triangle is a triangular array of the binomial coefficients.
The entry in the
row (start counting rows from 0) and
column (start counting columns from 0) of Pascal's triangle is denoted by

Coefficient 20 stands in 6th row, then n = 6 and in 3rd column, so k = 3.
Hence,

Hello,
Very nice as problem.
2 solutions:
1 quater,8 dimes, 2 pennies
and
3 quaters,3 dimes, 2 pennies
since
107=( 0, 0, 107) but : 100= 0*25+ 0*10+ 100
107=( 0, 1, 97) but : 100= 0*25+ 1*10+ 90
107=( 0, 2, 87) but : 100= 0*25+ 2*10+ 80
107=( 0, 3, 77) but : 100= 0*25+ 3*10+ 70
107=( 0, 4, 67) but : 100= 0*25+ 4*10+ 60
107=( 0, 5, 57) but : 100= 0*25+ 5*10+ 50
107=( 0, 6, 47) but : 100= 0*25+ 6*10+ 40
107=( 0, 7, 37) but : 100= 0*25+ 7*10+ 30
107=( 0, 8, 27) but : 100= 0*25+ 8*10+ 20
107=( 0, 9, 17) but : 100= 0*25+ 9*10+ 10
107=( 0, 10, 7) but : 100= 0*25+ 10*10+ 0
107=( 1, 0, 82) but : 100= 1*25+ 0*10+ 75
107=( 1, 1, 72) but : 100= 1*25+ 1*10+ 65
107=( 1, 2, 62) but : 100= 1*25+ 2*10+ 55
107=( 1, 3, 52) but : 100= 1*25+ 3*10+ 45
107=( 1, 4, 42) but : 100= 1*25+ 4*10+ 35
107=( 1, 5, 32) but : 100= 1*25+ 5*10+ 25
107=( 1, 6, 22) but : 100= 1*25+ 6*10+ 15
107=( 1, 7, 12) but : 100= 1*25+ 7*10+ 5
107=( 1, 8, 2) is good
107=( 2, 0, 57) but : 100= 2*25+ 0*10+ 50
107=( 2, 1, 47) but : 100= 2*25+ 1*10+ 40
107=( 2, 2, 37) but : 100= 2*25+ 2*10+ 30
107=( 2, 3, 27) but : 100= 2*25+ 3*10+ 20
107=( 2, 4, 17) but : 100= 2*25+ 4*10+ 10
107=( 2, 5, 7) but : 100= 2*25+ 5*10+ 0
107=( 3, 0, 32) but : 100= 3*25+ 0*10+ 25
107=( 3, 1, 22) but : 100= 3*25+ 1*10+ 15
107=( 3, 2, 12) but : 100= 3*25+ 2*10+ 5
107=( 3, 3, 2) is good
107=( 4, 0, 7) but : 100= 4*25+ 0*10+ 0