This is a simple Pythagorean Theorem problem. 7 is the hypotenuse so you would do c^2-a^2=b^2. In this case 7^2-2^2=b^2. 7^2 is 49 and 2^2 is 4 so you have 49-4=b^2. 49-4 is 45. The square root of 45 is 6.70. So x=6.70
7v-v=12 subtract v from 7v to get 6v
6v=12 divide 12 by 6 to find variable
v=2
Answer:
<u></u>
- <u>No. You would have to cut the number of veggie burgers in more than half.</u>
Explanation:
<u>1. Model the situation with a system of equations</u>
<u />
<u>a) Name the variables:</u>
- number of turkey burgers: t
- number of veggie burgers: v
<u />
<u>b) Number of burgers:</u>
<u />
<u>c) Cost of the 50 burgers:</u>
<u>2. Solve that system of equations:</u>
<u />
<u>a) System</u>
<u>b) Mutliply the first equation by 2 and subtract the second equation</u>
- 100 = 2t + 2v
- 90 = 2t + 1.50v
- v = 20 ⇒ t = 50 - 20 = 30
<u />
<u>c) How much would you spend if the next year you buy the double of 20 turkey burgers (40) and the half of 30 veggie burgers (15)</u>
- $2(40) + $1.50(15) = $80 + $22.50 = $102.50
Then, you if you double the number of turkey burgers, and cut the number burgers in half, you would spend more than $90 ($102.50).
Answer:
The circulation of the field f(x) over curve C is Zero
Step-by-step explanation:
The function
and curve C is ellipse of equation

Theory: Stokes Theorem is given by:

Where, Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Also, f(x) = (F1,F2,F3)

Using Stokes Theorem,
Surface is given by g(x) = 
Therefore, tex]\hat{N} = grad(g(x))[/tex]


Now, 
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\x^{2}&4x&z^{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5Cx%5E%7B2%7D%264x%26z%5E%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = (0,0,4)
Putting all values in Stokes Theorem,



I=0
Thus, The circulation of the field f(x) over curve C is Zero