1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weeeeeb [17]
3 years ago
14

From least to greatest...can someone help me figure this out?? 3 9/13, 3 4/15, 3 1/7

Mathematics
2 answers:
mote1985 [20]3 years ago
7 0
3 1/7 , 3 4/15, 3 9/13
QveST [7]3 years ago
6 0
3 1/7 Then 3 4/15 Then 3 9/13
You might be interested in
What are the angles sizes
Rus_ich [418]
Answers:
(x+2) = 55 degrees

x = 53 degrees

the given is 72 degrees


Explanation:
A triangle always equals 180 degrees. It was given that one of the angle measures is 72 degrees. 180-72=108. Now I need to find the value of x. (x+2)+x=108. Solving this equation I get x=53. Substitute this back into the angle measures and u get the answers as stated above.
5 0
3 years ago
Whats the answer to this?
qaws [65]

Answer: 1,3,5

Step-by-step explanation:

3 0
3 years ago
Check all of the ordered pairs that satisfy the equation below.y=2/5x
zvonat [6]

We are going to do this step by step:

Let's start with option A

A.

X = 25 and Y = 5/2

y=\frac{2}{5}\cdot x=\frac{2}{5}\cdot25=\frac{2\cdot25}{5}=\frac{50}{5}=\frac{5\cdot10}{5\cdot1}=10

In this case, when X = 25 , then Y = 10 ,which is different to 5/2

B.

X = 14 , Y = 35

y=\frac{2}{5}\cdot14=\frac{28}{5}

In case, when X = 14, then Y = 28/5, which is different to 35

C.

X = 40 , Y = 24

y=\frac{2}{5}\cdot40=\frac{80}{5}=16

Similarly, in this case, when X = 40, then Y = 16, which is different to 24

D.

X = 10 , Y=4

y=\frac{2}{5}\cdot10=\frac{20}{5}=4

Now, in this case, we can see that when X = 10, then Y = 4 which is the same as the given value of Y

E.

X = 50 , Y = 20

y=\frac{2}{5}\cdot50=\frac{100}{5}=20

In this case, the values of Y are also the same.

F.

X = 30 , Y = 12

y=\frac{2}{5}\cdot30=\frac{60}{5}=12

Again, in this case, the values of Y are the same, so the pair satisfies the equation.

In conclusion: options D, E and F satisfy the equation

3 0
1 year ago
Which set of measurements could represent the three sides of a triangle?
yawa3891 [41]

Answer:

The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.

Step-by-step explanation:

The measurements are,

                  7cm, 11cm, 54cm, 60cm, 61cm, 65cm

Step:1

                 To check the right angle triangle, Pythagorean theorem can be used.

                For a Pythagorean theorem,

                                     ..........................(1)

               The side values are lower than the hypotenuse,

                                                        ...................................(2)

               Where,

                         a,b - side values

                            c - Hypotenuse

               For right angle triangle,  c > a, b

               Alternative : 1

               Take, a = 7cm, b = 11cm

               From eqn (2),

                                                   =  = 13.04

              The above value is not equal to the any one of the values of ( 54cm. 60cm, 61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 2

               Take, a = 7cm, b = 54cm

               From eqn (2),

                                                   =  = 54.45

              The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 3

               Take, a = 7cm, b = 60cm

               From eqn (2),

                                                   =  = 60.406

              The above value is not equal to the any one of the values of (61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 4

               Take, a = 7cm, b = 61cm

               From eqn (2),

                                                   =  = 61.40

              The above value is not equal to the values of (65cm ), So its not an sides of right triangle.

                 Alternative : 5

               Take, a = 11cm, b = 54cm

               From eqn (2),

                                                   =  = 55.1089

              The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.      

                Alternative : 6

               Take, a = 11cm, b = 60cm

               From eqn (2),

                                                  =  = 61

              The above value is equal to the values of (61cm ), So its an sides of right triangle. The three sides are 11, 60 and 61.

Step:2

            Check for solution,

                                     

                                           

Result:

            The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.                

Step-by-step explanation: The side lengths of a right triangle is 11cm, 60cm and 61cm.

4 0
3 years ago
How would you find the surface area of a cube, if you knew the area of one face ???
Nataly_w [17]

Answer:

<h2>Step-by-step </h2>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Will give brainliest
    12·1 answer
  • The area of a triangle is 25 sq cm and the base of the triangle is 5 cm. Which equation could be used to find the height of the
    9·1 answer
  • Yulia has $156. she spent 3/4 of it on a bag and 1/2 on a scarf. how much money sid she have left ?
    12·2 answers
  • 72 21/64 being simplified as a fraction <br> if right ill do 5 star
    5·1 answer
  • Multiply.
    5·1 answer
  • Lori needs more than 250 signatures to run for the position of class president for her middle school. She already has 75 signatu
    7·1 answer
  • Part A
    15·1 answer
  • Mabel worked 6 hours yesterday and 0.57 hour<br> today. How many hours total did she work?
    11·2 answers
  • Can someone describe this to me? I don't understand..
    11·1 answer
  • On a blueprint, the length of a wall is 5 centimeters. If the actual length of the wall is 15 feet, what is the scale of the blu
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!