After 1st half life it will be 36/2 i.e. 18gm then 9 gm and then 4.5 grams simply
Hope this is what you were searching for!
Answer:
Using the log combination rules to reduce the famous Sakur-Tetrode equation, The change in entropy is given as:
∆S = NK*ln(V"V$/V").
Where V"V$ is final Volume (Vf) after constraint's removal,
V" is Initial Volume (Vi) before constraint's removal.
Temperature (T) is constant, Internal Energy, U is constant, N and K have their usual notations
Explanation:
Given in the question, the container is an adiabatic container.
For an adiabatic contain, it does not permit heat to the environment due to its stiff walls. This implies that the Internal Energy, U is kept constant(Q = U). The temperature is also constant (Isothermal). Thus, the famous Sakur-Tetrode equation will reduce to ∆S = NK* In(Vf/Vi).
Vf is the volume after the constraint is removed(Vf = V"V$). Vi is the volume occupied before the constraint is removed (Vi = V")
1. Archaeological Dating. Carbon-14 is often used to find the age of a substance many years old.
2. In the use of x-rays and cat scans. X-Ray technicians often inject radioactive iodine in ones system to increase the contrast between soft tissue and bone on an x-ray image.
3. Smoke detectors: Americium is often used in smoke detectors because it is very sensitive to burning carbon dioxide.
(a) As the car is moving with constant velocity, it means the rate change of velocity does not change, therefore the average acceleration of the car is zero.
Thus, there is no acceleration, when velocity is constant.
(b) Average acceleration,

Here, v is final velocity and u is the initial velocity and
is the time interval.
As twelve seconds later, the car is halfway around the track and traveling in the opposite direction with the same speed, therefore

Thus, the average acceleration of the car is
in the direction to the left.