Answer:
a. z = 2.00
Step-by-step explanation:
Hello!
The study variable is "Points per game of a high school team"
The hypothesis is that the average score per game is greater than before, so the parameter to test is the population mean (μ)
The hypothesis is:
H₀: μ ≤ 99
H₁: μ > 99
α: 0.01
There is no information about the variable distribution, I'll apply the Central Limit Theorem and approximate the sample mean (X[bar]) to normal since whether you use a Z or t-test, you need your variable to be at least approximately normal. Considering the sample size (n=36) I'd rather use a Z-test than a t-test.
The statistic value under the null hypothesis is:
Z= X[bar] - μ = 101 - 99 = 2
σ/√n 6/√36
I don't have σ, but since this is an approximation I can use the value of S instead.
I hope it helps!
<span>Least to greatest
</span><span>12/4, </span>4.13, 4 1/3 , the square root of 43
A. 32500
b. 60,400
c. 2.4 x 10 ^ -6
d. 1.47 x 10 ^3
Answer:
No bcuz its not on the line
Step-by-step explanation:
Answer:
Step-by-step explanation:
The common difference (d) can be found using the first and 4th terms:
a1 = 3
a4 = a1 +d(4 -1)
-9 = 3 +3d . . . . . simplify
-3 = 1 + d . . . . . . divide by 3
-4 = d . . . . . . . . . subtract 1
Then ...
x = a1 + d = 3 -4 = -1
y = x + d = -1 -4 = -5
The values of x and y are -1 and -5, respectively.