A mechanism that is effective in maintaining a normal glomerular blood pressure only if the systemic mean arterial pressure remains between 80 and 180 mm hg is called renal autoregulation.
<h3>What is renal autoregulation?</h3>
- Autoregulation is the inner characteristic of blood vessels present in end organs, like heart, kidney, and mind, by which they dilate or constrict in response to pressure changes, thus help to keep the blood flow generally steady.
- Usually our body tries to regulate our blood pressure in range of 50 to 150 mm Hg.
- Regulation of renal blood flow and glomerular blood pressure in kidneys is called renal autoregulation.
- There are 3 mechanisms of renal blood flow namely myogenic response (MR), tubuloglomerular feedback (TGF) and third mechanism that is independent of TGF but slower than MR.
Learn more about renal autoregulation here:
brainly.com/question/28064114
#SPJ4
The answer is D: solar energy is a renewable source
The correct answer is high, low.
Arteries are part of the circulatory system and are responsible for carrying blood away from the heart and around the body. The arterial blood is oxygenated and this process ensures that every tissue around the body will receive oxygen and nutrients through this blood flow.
Veins are also part of the circulatory system and are responsible for carrying the deoxygenated blood from the tissues back to the heart.
Venous pressure is much lower than the arterial pressure. More specifically, venous pressure ranges from 5 to 8 mmHg, while arterial pressure ranges from 15 to 30 mmHg.
The correct answer is B. unicellular.
Dinoflagellates are unicellular or multicellular, producers, and autotrophs, and apple trees are multicellular, producers, and autotrophs. All plants have numerous cells in them, so they can never be unicellular. The remaining characteristics they share with less complex organisms such as dinoflagellates.