1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
3 years ago
6

Help with this math homework

Mathematics
1 answer:
rjkz [21]3 years ago
4 0

(Please do keep in mind that when you name angles, the first and third letters can be switched. So if you have <COA and I say <AOC, they are the same thing as long as O is the second letter)

2a) Complementary means the sum of the angles is 90°. Since <COA is 90°, <COB and <BOA are complementary.

2b) Supplementary means the sum of the angles is 180°. Since 180° is a straight line, there are three angles including that angle to make 180°. So in addition to <BOC, your answer would be <BOA and <COD.

2c) Vertical angles are across from each other. The angle across from <BOA is <DOE.

3a) 90°. There's a little square there letting you know it's 90°

3b) 51°. Since <CBF and <CBE are complementary, you would subtract 39 from 90.

3c) 17°. Since <DBE and <ABE are complementary, you subtract 73 from 90.

4) Keep in mind that ray BO is a bisector of <AOC, in other words, the ray splits the angle in half. So <AOB is congruent to <BOC. So solve for x:

x+3=2x+11

3=x+11

x=-8

Now plug in x for either angle

8+3= 11

So that means <AOB and <BOC both equal 11°.

To find <AOC, double that.

<AOC equals 22°.

You might be interested in
I need help writing the first 5 terms of the sequence!
Angelina_Jolie [31]

The first five terms of the sequence are 1, 4, 7, 10, 13.

Solution:

Given data:

a_{1}=1

a_{n}=a_{n-1}+3

General term of the arithmetic sequence.

a_{n}=a_{n-1}+d, where d is the common difference.

d = 3

a_{n}=a_{n-1}+3

Put n = 2 in a_{n}=a_{n-1}+3, we get

a_{2}=a_1+3

a_{2}=1+3

a_2=4

Put n = 3 in a_{n}=a_{n-1}+3, we get

a_{3}=a_2+3

a_{3}=4+3

a_3=7

Put n = 4 in a_{n}=a_{n-1}+3, we get

a_{4}=a_3+3

a_{4}=7+3

a_4=10

Put n = 5 in a_{n}=a_{n-1}+3, we get

a_{5}=a_4+3

a_{5}=10+3

a_5=13

The first five terms of the sequence are 1, 4, 7, 10, 13.

3 0
4 years ago
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
Whats the answer? -4(x-2)-5(y+2)+(-3)(8-6b)
SpyIntel [72]
<span>-4(x-2)-5(y+2)+(-3)(8-6b)
= -4x + 8 - 5y - 10 - 24 + 18b
= -4x -5y + 18b - 26

hope it helps</span>
6 0
4 years ago
Click o the first 4 multiples of 8.
Ivenika [448]
Multiples of 8 are basically the result of counting by 8's. (Technically, multiples are a set of number which can be divided by a certain number without a remainder.)

The first 4 multiples of 8 are {8,16,24,32}.
7 0
3 years ago
What is the vertical clearance 2 m from the edge of the tunnel?
raketka [301]
When x=0 y=50 when y=0 x=+\-5. -x^2 makes the parabola open downward y(x)=2x^2+50;y(3)=2*9+50=32
4 0
3 years ago
Other questions:
  • What's the product of 21 and (6.3 times 10-4)
    6·1 answer
  • Please help I need answers ASAP
    13·1 answer
  • Expand and combine like terms.<br><br> (2x4 + 32°) (224 – 3.2%)
    9·1 answer
  • 6.Find the equation of<br> the line:<br> through: (-2, 3) and<br> (1,5)
    15·1 answer
  • Write the following comparison as a ratio reduced to lowest terms. 169 inches to 13 feet
    13·1 answer
  • Negative symbol as opposite | HELP PLS
    8·2 answers
  • The lateral surface area is _ square inches
    13·2 answers
  • Distance between (-5,2) and (-5,-4)
    7·1 answer
  • What are the solutions to this quadratic equation? 5x2-7x-18=0
    13·2 answers
  • What is the volume of the figure?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!