Answer:
33.3%
Step-by-step explanation:
Step one:
given data
Initial population (1980)= 12000
Final population(1990)= 16000
change in population= 16000-12000= 4000
Step two:
% increase= change in population/initail population *100
%increase= 4000/12000*100
%increase= 0.333*100
% increase= 33.3%
Answer:
I think the answer is 27.4617= 27
Answer:
x=−11
Step-by-step explanation:
7+5(x−3)=7(x+2)
Step 1: Simplify both sides of the equation.
7+5(x−3)=7(x+2)
7+(5)(x)+(5)(−3)=(7)(x)+(7)(2)(Distribute)
7+5x+−15=7x+14
(5x)+(7+−15)=7x+14(Combine Like Terms)
5x+−8=7x+14
5x−8=7x+14
Step 2: Subtract 7x from both sides.
5x−8−7x=7x+14−7x
−2x−8=14
Step 3: Add 8 to both sides.
−2x−8+8=14+8
−2x=22
Step 4: Divide both sides by -2.
−2x
−2
=
22
−2
x=−11
∫㏑(x² - x + 2) dx = ∫㏑(x² - 2x + x + 2) dx
∫㏑(x² - x + 2) dx = ∫㏑[x(x) - x(2) + 1(x) - 1(2)] dx
∫㏑(x² - x + 2) dx = ∫㏑[x(x - 2) + 1(x - 2)] dx
∫㏑(x² - x + 2) dx = ∫㏑[(x + 1)(x - 2)] dx
∫㏑(x² - x + 2) dx = ∫㏑(x + 1) + ㏑(x - 2) dx
∫㏑(x² - x + 2) dx = ∫㏑(x + 1) dx + ∫㏑(x - 2) dx
∫㏑(x² - x + 2) dx = [x㏑(x + 1) - (x - ㏑(|x + 1|)) + C] + [x㏑(x - 2) - (x + ㏑(|x - 2|)) + C]
∫㏑(x² - x + 2) dx = [x ln(x + 1) + x㏑(x - 2)] + [(-x +㏑(|x + 1|)) + (-x - ln(|x - 2))] + {C + C}
∫㏑(x² - x + 2) dx = x㏑(x² - x + 2) + [-2x - (㏑(|x + 1|))/㏑(|x - 2|))] + 2C
∫㏑(x² - x + 2) dx = x㏑(x² - x + 2) - 2x - (㏑(|x + 1|))/㏑(|x - 2|)) + 2C
Answer:
C. 248
Step-by-step explanation:
