Answer: 148
Work: 50 men multiplied by 3 =150
If there is two less women from 3 multiplied by 50 (150) , then 150 - 2 = 148
Well, there is nothing following, but if there is anything about K equal to or greater 4, or K being>2 than thats it.
The numbers are: 36 and 11 .
______________________________________________
Explanation:
______________________________________________
Let us represent the TWO (2) numbers with the variables;
"x" and "y" .
__________________________________________
x + y = 47 .
y − x = 25.
__________________________________________
Since: " y − x = 25 " ;
Solve for "y" in terms of "x" ;
y − x = 25 ;
Add "x" to each side of the equation:
_____________________________________________
y − x + x = 25 + x ;
to get:
y = 25 + x .
Now, since:
x + y = 47 ;
Plug in "(25 + x)" as a substitution for "y"; to solve for "x" :
x + (25 + x) = 47 ;
x + 25 + x + 47 ;
2x + 25 = 47 ;
Subtract "25" from each side of the equation:
2x + 25 − 25 = 47 − 25 ;
2x = 22 ;
Divide EACH SIDE of the equation by "2" ;
to isolate "x" on one side of the equation; and to solve for "x" ;
2x / 2 = 22 / 2 ;
x = 11 ;
______________________________________________
x + y = 47<span> ;
</span>Plug in "11" for "x" into the equation ; to solve for "y" ;
11 + y = 47 ;
Subtract "11" from EACH SIDE of the equation;
to isolate "y" on one side of the equation; and to solve for "y" ;
11 + y − 11 = 47 − 11 ;
y = 36 .
___________________________________________
So: x = 11 , y = 36 ;
___________________________________________
Let us check our work:
y − x = 25 ;
36 − 11 =? 25 ? Yes!
x + y = 47 ;
36 + 11 =? 47 ? Yes!
______________________________________________
The numbers are: 36 and 11 .
______________________________________________
Since we have two possible pieces of information and 2 items to solve for, we know this is a system of equations.
Our first piece of information is that our shorter leg (s) is 2 feet shorter than our longer leg (l). This can be written as s=l-2.
Our second piece of information is that using the Pythagorean theorem that our shorter leg squared plus our longer leg squared is equal to our hypotenuse squared. This can be represented by s^2+l^2=10^2. Now we can solve.
We have already isolated for s in our first equation, so we can substitute l-2 in.
(l-2)^2+l^2=10^2
l-2+l=10
2l-2=10
2l=12
l=6
Now we can substitute in for s in our simpler equation
s=6-2
s=4
We now know that using our knowledge of systems of equations, the side lengths of this right angle triangle are 6 and 4.