Using the domain concept, the restrictions on the domain of (u.v)(x) are given by:
A. u(x) ≠ 0 and v(x) ≠ 2.
<h3>What is the domain of a data-set?</h3>
The domain of a data-set is the set that contains all possible input values for the data-set.
To calculate u(x) x v(x) = (u.v)(x), we calculate the values of u and v and then multiply them, hence the restrictions for each have to be considered, which means that statement A is correct.
Summarizing, u cannot be calculated at x = 0, v cannot be calculated at x = 2, hence uv cannot be calculated for either x = 0 and x = 2.
More can be learned about the domain of a data-set at brainly.com/question/24374080
#SPJ1
<span><span>√<span><span><span>(<span><span>3<span>x4</span></span><span>y3</span></span>)</span>2</span>⋅<span>(<span><span>6x</span>y</span>)</span></span></span><span><span><span><span>3<span>x4</span></span><span>y3</span></span>2</span>⋅<span><span>6x</span>y</span></span></span>Pull terms out from under the radical.<span><span><span>3<span>x4</span></span><span>y3</span></span><span>√<span><span>6x</span><span>y</span></span></span></span>
La pregunta está incompleta ya que no se da el costo de la colocación de baldosas por m².
Suponga que el costo de los mosaicos por m² = c
Respuesta:
39.06c
Explicación paso a paso:
El costo del embaldosado será:
El costo por m² * área total a embaldosar
Dado que :
La dimensión de la habitación a embaldosar es:
Longitud = 9,30 metros
Ancho = 4.20 metros
El área total de la habitación a embaldosar es = Largo * ancho
Área total de la habitación a embaldosar = 9,30 m * 4,20 m
Superficie total de la habitación a embaldosar = 39,06 m²
Si el costo del mosaico por m² = c
El costo de embaldosar la habitación será:
39,06 * c = 39,06c
The answer is √3. This is because √3 is already an irrational number and if you multiply it but either -5/9 or add it by 4, the product or sum will not terminate, nor repeat, or is able to turn in to a fraction