1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
5

Identify all the three-dimensional figures that result from the rotations of the two-dimensional shapes.

Mathematics
1 answer:
Artemon [7]3 years ago
6 0
Sounds like a cylinder.
You might be interested in
x = y - 3 x + 3y = 13 What is the solution to the system of equations? A) (1, 4) B) (4, 1) C) (7, 4) D) (2.5, 5.5)
egoroff_w [7]
X+ 3y = 13
(y - 3) + 3y =13
4y - 3 = 13
4y -3 + 3 = 13+3
4y = 16
4y/4 = 16/4
y=4

x = 4 - 3
x = 1

A) (1, 4)

Check x+3y =13
1+ 3(4) =13
1 + 12=13
13=13
6 0
3 years ago
Help me solve this please
Vesnalui [34]
(-2,7) because of the circle equation.
Please mark brainliest! Thank you
4 0
3 years ago
Read 2 more answers
How is the equation Y= 2X similar to the equation Y = 2X +3. how is it different
Svetlanka [38]

Answer:

2x in common (slope)

Step-by-step explanation:

similar because they both have a slope of 2

different because the 2nd equation has a y intercept of 3

8 0
3 years ago
Read 2 more answers
Can someone help me please
Neporo4naja [7]

If Deliah does jumping jacks at a constant rate, this means that she does them at the same pace or you could say that she does the same amount of jumping jacks in a specified amount of time, ie. if you counted how many jumping jacks she did in one minute, it would be same as how many she would complete in the next minute, and the next, and so on.

Now given that she does 184 jumping jacks in four minutes, and she has kept a constant pace throughout, to find out how many she does each minute, we simply need to divide the number of jumping jacks she does in 4 minutes by 4. Thus:

Jumping jacks in 1 minute = Jumping jacks in 4 minutes / 4

= 184 / 4

= 46

Thus, Deliah can do 46 jumping jacks per minute.

5 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the area of this trapezoid? 96 in² 132 in² 168 in² 1344 in² Trapezoid A B C D with parallel sides D C and A B. Points F
    10·2 answers
  • Butterflies: • Alice, Bob, and Charlotte are looking for butterflies. They look in three separate parts of a field, so that thei
    12·1 answer
  • Sinxcos y = }(sin(x + y) + sin(x-y))<br> O<br> A. True<br> O<br> B. False
    8·1 answer
  • Please help me asap!!
    11·2 answers
  • Five students in Mr. Roberts' class are gathering donations for a party. The amount each student has collected is below. Student
    15·1 answer
  • Question 11
    9·1 answer
  • Mr rios washed 1/4 of her landury and her son washed 2/7 of it how much laundry needs washed​
    6·1 answer
  • Inquality x=3 is a solution or x=-2is a solution for 7(2 -x)&gt;5
    6·1 answer
  • DUE NOW HELP
    14·1 answer
  • CAN SOMEONE HELP ME PLEASE ITS A QUIZ
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!