1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
4 years ago
5

HURRYY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Mathematics
1 answer:
zepelin [54]4 years ago
3 0
<span>corresponding angles is the answer

</span>
You might be interested in
What is 7,000,000,000 in scientific notation?
AVprozaik [17]
7.0 x 10^9 Is the answer
4 0
4 years ago
From how far on a clear day, and assuming there are no obstructions, could you see from the top of the Eiffel Tower? Take the he
PSYCHO15rus [73]

<u>Answer-</u>

From 61.21 km on a clear day you could see from the top of the Eiffel Tower.

<u>Solution-</u>

From the attachment,

OA = Distance between the top of the Eiffel Tower and center of the earth = 6240 km + 300 m = 6240 km + 0.300 km = 6240.3 km

OB = Radius of the earth = 6240 km

Applying trigonometric properties,

\Rightarrow\cos \theta=\dfrac{OB}{OA}\\\\\Rightarrow \theta=\cos^{-1}\dfrac{OB}{OA}\\\\\Rightarrow \theta=\cos^{-1}\dfrac{6240}{6240.3}\\\\\Rightarrow \theta=0.562

So,

\text{Circumference of the earth} = 2\pi \times radius = 2\pi \times 6240=12480\pi=39207 km

So, the arc length will be,

=\dfrac{0.562}{360}\times 39207\\\\=61.21\ km

Therefore, from 61.21 km on a clear day you could see from the top of the Eiffel Tower.

6 0
4 years ago
Please help angle c angle ahdbdoneoend
Readme [11.4K]
Looks like TRUE this IS the smallest angle
3 0
3 years ago
Read 2 more answers
Which construction of parallel lines is justified by the theorem "when two lines are intersected by a transversal and the corres
Ugo [173]

Answer:

c

Step-by-step explanation:

I think you missed attaching the photo, please see my attachment.

And the correct answer is C,

When you look at where the arc meets the parallel lines, if you create a seam between two points, you get a straight line parallel to the horizontal lines  so it makes the corresponding angles are congruent.

5 0
4 years ago
Find the function y = f(t) passing through the point (0, 18) with the given first derivative.
monitta

Answer:

\displaystyle y = \frac{t^2}{16} + 18

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Coordinates (x, y)

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

Point (0, 18)

\displaystyle \frac{dy}{dt} = \frac{1}{8} t

<u>Step 2: Find General Solution</u>

<em>Use integration</em>

  1. [Derivative] Rewrite:                                                                                         \displaystyle dy = \frac{1}{8} t\ dt
  2. [Equality Property] Integrate both sides:                                                        \displaystyle \int dy = \int {\frac{1}{8} t} \, dt
  3. [Left Integral] Integrate [Integration Rule - Reverse Power Rule]:                 \displaystyle y = \int {\frac{1}{8} t} \, dt
  4. [Right Integral] Rewrite [Integration Property - Multiplied Constant]:           \displaystyle y = \frac{1}{8}\int {t} \, dt
  5. [Right Integral] Integrate [Integration Rule - Reverse Power Rule]:              \displaystyle y = \frac{1}{8}(\frac{t^2}{2}) + C
  6. Multiply:                                                                                                             \displaystyle y = \frac{t^2}{16} + C

<u>Step 3: Find Particular Solution</u>

  1. Substitute in point [Function]:                                                                         \displaystyle 18 = \frac{0^2}{16} + C
  2. Simplify:                                                                                                             \displaystyle 18 = 0 + C
  3. Add:                                                                                                                   \displaystyle 18 = C
  4. Rewrite:                                                                                                             \displaystyle C = 18
  5. Substitute in <em>C</em> [Function]:                                                                                \displaystyle y = \frac{t^2}{16} + 18

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • Which of the following numbers is NOT in scientific notation?
    5·2 answers
  • If f(x) = 2x^2 + 1 and g(x) = 3x - 2, what is the value of f(g(-2))?
    12·1 answer
  • Prove that interior angles 1 and 3 are congruent when the lines are parallel with a transversal. PLEASE ANSWER ASAP, DUE IN HALF
    7·2 answers
  • Write an expression that shows how to use the halving and doubling strategy to find 28 x 50
    10·1 answer
  • The diameter of a large sphere is 4 times the diameter of a small sphere. The surface area of the large sphere is how many times
    7·1 answer
  • At the snack bar, 12 hot dogs are sold for every 10 hamburgers sold. At this rate, how many hamburgers will be sold if 66 hot do
    14·2 answers
  • (-x^3yz)(-3x^2y^2z^3)^3
    12·1 answer
  • The price of a ride pass at a fun park is $65. What is the<br> sale price after a 35% discount?
    10·2 answers
  • I need help bad? What’s the answer
    8·1 answer
  • Henry picks 10.38 pounds of apples. He uses 0.3 of the apples to make an apple pie. How many pounds of apples does Henry use to
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!