Answer:
tsu and hgi
Step-by-step explanation:
The string is assumed to be massless so the tension is the sting above the 12.0 N block has the same magnitude to the horizontal tension pulling to the right of the 20.0 N block. Thus,
1.22 a = 12.0 - T (eqn 1)
and for the 20.0 N block:
2.04 a = T - 20.0 x 0.325 (using µ(k) for the coefficient of friction)
2.04 a = T - 6.5 (eqn 2)
[eqn 1] + [eqn 2] → 3.26 a = 5.5
a = 1.69 m/s²
Subs a = 1.69 into [eqn 2] → 2.04 x 1.69 = T - 6.5
T = 9.95 N
Now want the resultant force acting on the 20.0 N block:
Resultant force acting on the 20.0 N block = 9.95 - 20.0 x 0.325 = 3.45 N
<span>Units have to be consistent ... so have to convert 75.0 cm to m: </span>
75.0 cm = 75.0 cm x [1 m / 100 cm] = 0.750 m
<span>work done on the 20.0 N block = 3.45 x 0.750 = 2.59 J</span>
Answer: 231.3 repeating!
Step-by-step explanation: I used the calculator
Answer:
The minimum percentage of the commuters in the city has a commute time within 2 standard deviations of the mean is 75%.
Step-by-step explanation:
We have no information about the shape of the distribution, so we use Chebyshev's Theorem to solve this question.
Chebyshev Theorem
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by
.
Applying the Theorem
The minimum percentage of the commuters in the city has a commute time within 2 standard deviations of the mean is 75%.