<u><em>Answer:</em></u>



<u><em>Explanation:</em></u>
<u>Part 1: Solving for m</u>
<u>We are given that:</u>
E = mc²
To solve for m, we will need to isolate the m on one side of the equation
This means that we will simply divide both sides by c²

<u>Part 2: Solving for c</u>
<u>We are given that:</u>
E = mc²
To solve for c, we will need to isolate the m on one side of the equation
This means that first we will divide both sides by m and then take square root for both sides to get the value of c

<u>Part 3: Solving for E</u>
<u>We are given that:</u>
m = 80 and c = 0.4
<u>To get the value of E, we will simply substitute in the given equation: </u>
E = mc²
E = (80) × (0.4)²
E = 12.8 J
Hope this helps :)
Answer:
1) Heterogeneous mixture
2). homogeneous mixture
3) water is solvent and sugar is solute
4). sublimation process
Hi,
The answer should be ‘soap is a base because it’s pH is above 7’
Answer:
Ka2 values should be used in obtaining pKa2 in the Henderson–Hasselbalch equation
Explanation:
During first dissociation from H3PO4 to H2PO4-, ka1 will be used, and from H2PO4-to HPO4-, ka2 values will be used, hence a buffer solution containing H2PO4-and HPO4-will use ka2 in obtaining pKa2 in the Henderson–Hasselbalch equation.
The correct answer is 221.06 °C hot.
If P₁ is the pressure at T₁ and P₂ is the pressure at T₂ then,
P₁/T₁ = P₂/T₂
It is given that P₁ = 2.38 atm
T₁ = 15.2 degree C = 273 + 15.2 = 288.2 K
P₂ = 4.08 atm
T₂ = x
Thus, 2.38 / 288.2 = 4.08 / x
x = (4.08 × 288.2) / 2.38
x = 494.06 K
x = 494.06 - 273 °C = 221.06 °C
Therefore, the tire would get 221.06 °C hot.