Considering that the subjects are chosen without replacement, they are not independent, and the probability cannot be found using the binomial distribution.
The binomial distribution and the hypergeometric distribution are quite similar, as:
- They find the probability of exactly x successes on n repeated trials.
- For each trial, there are only two possible outcomes.
- The difference is that the binomial distribution is for independent trials, that is, in each trial, the probability of success is the same, while the hypergeometric distribution is for dependent trials.
- If the sample is without replacement, the trials are not independent, thus the hypergeometric distribution is used, not the binomial.
A similar problem is given at brainly.com/question/21772486
Answer:
I am pretty sure the answer would be $107.31. Sorry if I'm wrong.
Step-by-step explanation:
First you take the total of the 3 DVD's (45.99) and you divide that by 3 (number of DVD's) to get 15.33 which is called the unit price. Then, you take your unit price and multiply that by how many items you are going to buy.
45.99 / 3 = 15.33
15.33 x 7 = 107.31
Do you have a picture you can upload? It’s most likely 24/2 = 12
The roots of the polynomial <span><span>x^3 </span>− 2<span>x^2 </span>− 4x + 2</span> are:
<span><span>x1 </span>= 0.42801</span>
<span><span>x2 </span>= −1.51414</span>
<span><span>x3 </span>= 3.08613</span>
x1 and x2 are in the desired interval [-2, 2]
f'(x) = 3x^2 - 4x - 4
so we have:
3x^2 - 4x - 4 = 0
<span>x = ( 4 +- </span><span>√(16 + 48) </span>)/6
x_1 = -4/6 = -0.66
x_ 2 = 2
According to Rolle's theorem, we have one point in between:
x1 = 0.42801 and x2 = −1.51414
where f'(x) = 0, and that is <span>x_1 = -0.66</span>
so we see that Rolle's theorem holds in our function.
Answer:
Step-by-step explanation:
Eliminate answer 4 immediately, because (4)(3) is not 7.
Look at answer 2: 7x + 3x = 10x, which does not match the middle term 12x in the original polynomial. Eliminate answer 2.
Look at answer 1: 1x + 21x = 22x, which does not match the middle term of the original polynomial. Eliminate answer 1.
All quadratics have solutions. Let's apply the quadratic formula to 3x^2 + 12x + 7: Here a = 3, b = 12 and c = 7, so that the discriminant b²-4ac is
12²-4(3)(7), or 144 - 84, or 60. Being positive, this tells us that the given poly has two real, unequal roots:
-12 ± √60 -12 + 2√15 -12 - 2√15
x = ----------------- = ------------------- and x = --------------------
3 3 3
Normally, if c is a root, then x - c is a factor.
If we try this here, however, the resulting factors do not at all match any of your answer choices.
Don't be offended...but please ensure you have copied this problem down correctly.