Answer:
x(t) = - 5 + 6t and y(t) = 3 - 9t
Step-by-step explanation:
We have to identify the set of parametric equations over the interval 0 ≤ t ≤ 1 defines the line segment with initial point (-5,3) and terminal point (1,-6).
Now, put t = 0 in the sets of parametric equations in the options so that the x value is - 5 and the y-value is 3.
x(t) = - 5 + t and y(t) = 3 - 6t and
x(t) = - 5 + 6t and y(t) = 3 - 9t
Both of the above sets of equations satisfy this above conditions.
Now, put t = 1 in both the above sets of parametric equations and check where we get x = 1 and y = -6.
So, the only set, x(t) = - 5 + 6t and y(t) = 3 - 9t satisfies this condition.
Therefore, this is the answer. (Answer)
Answer:
I think the answer is 3:5
Answer: y-4=0
Step-by-step explanation:
*Correct Question:
Based on the similar triangles shown below, Theodore claims that ∆TUV is transformed to ∆WXY with a scale factor of 3/2. Is Theodore correct?
A. Yes, the triangles are similar with a scale factor of 3/2.
B. No, the triangles are similar with a scale factor of 2/1.
C. No, the triangles are similar with a scale factor of 2/3.
D. No, the triangles are similar with a scale factor of 4/3.
Answer:
C. No, the triangles are similar with a scale factor of 2/3.
Step-by-step explanation:
∆TUV is the original triangle. After transformation, the size reduced to give us ∆WXY. This means ∆TUV was reduced by a scale factor to give ∆WXY. The scale factor should be a fraction, suggesting, the original size of the ∆ was reduced upon transformation.
Thus, the ratio of their corresponding sides = the scale factor.
This is: 
If you multiply the side length of ∆TUV by ⅔, you'd get side length of ∆WXY.
So, Theodore is wrong.