There are a couple ways to do this, but basically you need to convert the units.
<span>7 yards x 3 ft/yard = 21 feet </span>
<span>4 yards x 3 ft/yard = 12 feet </span>
<span>So the area (in sq. ft) will be: </span>
<span>21 x 12 </span>
<span>= 252 sq. ft. </span>
<span>Alternatively, you can figure the area in square *yards* and then multiply by 9 sq. ft per sq. yard. </span>
<span>7 yards x 4 yards x 9 sq. ft/sq. yard </span>
<span>= 252 sq. ft.
hope this helps :)</span>
Replace
:
![\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \int_0^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%20%5Csqrt%5B3%5D%7B%5Ctan%28x%29%7D%20%5Cln%28%5Ctan%28x%29%29%20%5C%2C%20dx%20%3D%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%20%5Cln%28x%29%7D%7B1%2Bx%5E2%7D%20%5C%2C%20dx)
Split the integral at x = 1, and consider the latter one over [1, ∞) in which we replace
:
![\displaystyle \int_1^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx = \int_0^1 \frac{\ln\left(\frac1x\right)}{\sqrt[3]{x} \left(1+\frac1{x^2}\right)} \frac{dx}{x^2} = - \int_0^1 \frac{\ln(x)}{\sqrt[3]{x} (1+x^2)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_1%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%20%5Cln%28x%29%7D%7B1%2Bx%5E2%7D%20%5C%2C%20dx%20%3D%20%5Cint_0%5E1%20%5Cfrac%7B%5Cln%5Cleft%28%5Cfrac1x%5Cright%29%7D%7B%5Csqrt%5B3%5D%7Bx%7D%20%5Cleft%281%2B%5Cfrac1%7Bx%5E2%7D%5Cright%29%7D%20%5Cfrac%7Bdx%7D%7Bx%5E2%7D%20%3D%20-%20%5Cint_0%5E1%20%5Cfrac%7B%5Cln%28x%29%7D%7B%5Csqrt%5B3%5D%7Bx%7D%20%281%2Bx%5E2%29%7D%20%5C%2C%20dx)
Then the original integral is equivalent to
![\displaystyle \int_0^1 \frac{\ln(x)}{1+x^2} \left(\sqrt[3]{x} - \frac1{\sqrt[3]{x}}\right) \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cfrac%7B%5Cln%28x%29%7D%7B1%2Bx%5E2%7D%20%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cfrac1%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cright%29%20%5C%2C%20dx)
Recall that for |x| < 1,

so that we can expand the integrand, then interchange the sum and integral to get

Integrate by parts, with



Recall the Fourier series we used in an earlier question [27217075]; if
where 0 ≤ x ≤ 1 is a periodic function, then



Evaluate f and its Fourier expansion at x = 1/2 :



So, we conclude that
![\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \frac94 \times \frac{2\pi^2}{27} = \boxed{\frac{\pi^2}6}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%20%5Csqrt%5B3%5D%7B%5Ctan%28x%29%7D%20%5Cln%28%5Ctan%28x%29%29%20%5C%2C%20dx%20%3D%20%5Cfrac94%20%5Ctimes%20%5Cfrac%7B2%5Cpi%5E2%7D%7B27%7D%20%3D%20%5Cboxed%7B%5Cfrac%7B%5Cpi%5E2%7D6%7D)
Answer:

Step-by-step explanation:
Hello,
for any real x different from 1

if f(x)=2x
f'(x)=2
if g(x)=-ln(1-x)

So antiderivative of

Is
2x-ln(1-x)
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer: 36/7
Step-by-step explanation:
Answer:

Step-by-step explanation:
As per the question,
let us consider f(x) = tan(x).
We know that <u>The Maclaurin series is given by:</u>

So, differentiate the given function 3 times in order to find f'(x), f''(x) and f'''(x).
Therefore,
f'(x) = sec²x
f''(x) = 2 × sec(x) × sec(x)tan(x)
= 2 × sec²(x) × tan(x)
f'''(x) = 2 × 2 sec²(x) tan(x) tan(x) + 2 sec²(x) × sec²(x)
= 4sec²(x) tan²(x) + 2sec⁴(x)
= 6 sec⁴x - 4 sec² x
We then substitute x with 0, and find the values
f(0) = tan 0 = 0
f'(0) = sec²0 = 1
f''(0) = 2 × sec²(0) × tan(0) = 0
f'''(0) = 6 sec⁴0- 4 sec² 0 = 2
By putting all the values in the Maclaurin series, we get



Therefore, the expansion of tan x at x = 0 is
.