The answer choice which explains that the three segments cannot be used to construct a triangle is; AC + CB < AB.
<h3>Which inequality explains why the three segments cannot be used to construct a triangle?</h3>
Since, It follows from the triangle inequalities theorem that sum of the side lengths of any two sides of a triangle is greater than the length of the third side.
Hence, since the sum of sides AC + CB is less than AB, it follows that the required inequality is; AC + CB < AB.
Read more on triangle inequalities;
brainly.com/question/309896
#SPJ1
Answer:
I do not understand.
Step-by-step explanation:
Please add a picture of explain what it is you want help with.
At this moment I do not understand the question, I am sorry.
I do not have an answer for that, but you should try looking for that on google or yahoo answers.
Answer: OPTION A
Step-by-step explanation:
The equation of the line in slope-intercept form is:

Where m is the slope and b the y-intercept.
Solve for y from each equation:

As you can see the slope and the y-intercept of each equation are equal, this means that both are the exact same line. Therefore, you can conclude that the system has infinitely many solutions.