Slope is

Then you use the equation

Where b is the y-intercept. To find it, plug in x and y from one of the points. Say, point 1 (1,10):

You know m (from above) and now you can solve for b.
Rearrange terms:

And that will be the answer.
Make sense?
Answer:
<u>Standard deviation for owner-occupied units</u>
2.9797
<u>Standard deviation for renter-occupied units</u>
3.1594
Step-by-step explanation:
Let us find first the mean. This is the distribution expected value or expectancy.
<u>Mean for owner-occupied units</u>
0.003 + 2*0.002 + 3*0.023 + 4*0.102 + 5*0.209 + 6*0.223 + 7*0.201 + 8*0.149 + 9*0.053 + 10*0.035 = 6.293
To compute the variance for owner-occupied units, we add these values


then divide by 10 and take the square root to get the standard deviation 2.9797
<u>Mean for renter-occupied units</u>
0.008 + 2*0.027 + 3*0.287 + 4*0.371 + 5*0.155 + 6*0.090 + 7*0.043 + 8*0.013 + 9*0.003 + 10*0.003 = 4.184
To compute the variance for renter-occupied units, we add these values


then divide by 10 and take the square root to get the standard deviation 4.184
Answer:
<em>The scale factor is 3</em>
Step-by-step explanation:
<u>Dilations</u>
A dilation is a transformation that produces an image that has the same shape as the original but has a different size.
A dilation is described by the scale factor or constant of dilation and the center of the dilation.
We are given a triangle XYZ of coordinates given in the graph to the left:
X=(-1,1), Y=(-1,4), Z=(-2,1)
It was dilated to triangle X'Y'Z' with coordinates:
X'=(-3,3), Y=(-3,12), Z=(-6,3)
Note each coordinate of the dilated triangle is three times the coordinates of the original triangle, thus the scale factor is 3
Answer:
(5,12)
Step-by-step explanation:
Ratio total =5+6=11
Difference between points
x-x axis from A to B=0-11=-11
y-y axis from A to B=22-0=22
Points from B=6/11(-11,22)=(-6,12)
Point M=Point B+(-6,12)=(11-6, 0+12)=(5,12)
130 would be one trip. if you divide 13 by 2 it is 6.5 and then multiply that by 20 you get 130. please mark me brainliest. have a great day and good luck with school:)