1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleonysh [2.5K]
2 years ago
14

How do you do this one?

Mathematics
1 answer:
ANTONII [103]2 years ago
3 0
\dfrac{24x-16}{3x-2}=\\
\dfrac{8(3x-2)}{3x-2}=\\
8


So it's 8.
You might be interested in
5
Dmitry [639]

Answer:

im pretty sure its ACD

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
It says solve by factoring.
dsp73

Answer:

Alright well Graph each side of the equation. The solution is the x - value of the point of intersection k = 4.582 Hope this helps :)

Step-by-step explanation:


6 0
3 years ago
Read 2 more answers
Complete all 4 problems
vagabundo [1.1K]

Answer:

7)-6a

8)7

9)x-1

10)8-k

Step-by-step explanation:

Here in every steps we took like terms to be added and finally there are no more like terms we cannot add nor subtract and we get answer

6 0
2 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Lin’s road trip is 75 miles long. She has completed 20% of a trip so far. How many miles has Lin gone so far?
Lynna [10]

You're basically told that Lin has traveled 20% of 75. Since 20% is one fifth, she has traveled 75/5=15 miles so far.

7 0
3 years ago
Other questions:
  • Can someone please help me solve this math problem, please? Thanks.
    7·1 answer
  • NEED HELP ASAP THE QUESTION IS IN THE PICTURE!!!
    7·1 answer
  • A multiplication problem is shown 789 times what equals 8679 what the missing number
    15·1 answer
  • Using the quadratic formula to solve x2 = 5 – x, what are the values of x?
    12·2 answers
  • Prove that when x is greater than one a triangle with side lengths a equals x squared minus one and c equals x squared plus one
    7·1 answer
  • 7cm<br>10cm<br>4cm<br>The area of the compound shape is 106cm.<br>work out the size of x.​
    5·2 answers
  • Is - 5/12 equivalent to 5/-12
    9·1 answer
  • Pouch-and-coin situations
    5·1 answer
  • It takes Ernie 45 hours to paint the house alone. Silene can do it in 36 hours alone. How long
    12·1 answer
  • Chuck's birthday is 2 days before Linus's.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!