That means that the discounts are the same
therfor 25% of original=180
multiply both sides by 4 or divide both sides by 0.25
original=720
the equation is
0.25 times original=180
and the original price is $720
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
You haven't provided the required roots, but I can tell you how to do this kind of exercises in general.
If the
coefficient is 1, i.e. the equation is written like
, then you can say the following about the coefficients b and c:
is the opposite of the sum of the roots
is the multiplication of the roots.
So, for example, if we want an equation whose roots are 4 and -2, we have:
So, the equation is 
If your roots are rational, you can work like this: suppose you want an equation with roots 3/4 and 1/2. You have:
And so the equation is

In order to have integer coefficients, you can multiply both sides of the equation by 8:

False, it would not make a right triangle